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THE TWISTED INDEX PROBLEM
FOR MANIFOLDS WITH BOUNDARY

PETER B. GILKEY & LANCE SMITH

SECTION ZERO

0.1 Introduction

The Atiyah-Singer index theorem gives a formula in K-theory for the index
of any elliptic operator. The Atiyah-Patodi-Singer twisted index theorem [2] is
the suspension of the Atiyah-Singer index theorem and gives a measure of
spectral flow and spectral asymmetry using the eta invariant with coefficients
in a locally flat bundle. It is possible to recover the Atiyah-Singer theorem
from the twisted index theorem using certain product formulas so the results of
[2] can be viewed as a generalization of the ordinary index theorem as we shall
see in §1.3.

It is well known that certain elliptic complexes (for example the signature
complex) do not admit local boundary conditions. However, for those which
do, the Atiyah-Bott theorem [1] provides a generalization of the index theorem
to manifolds with boundary. In a similar fashion, not every twisted index
problem admits local boundary conditions; the operator * d * d * is one of
those which does not as we shall see later. This paper is an effort to combine
both the Atiyah-Bott index theorem and the Atiyah-Patodi-Singer twisted
index theorem to derive a formula in terms of characteristic classes for the
twisted index on a manifold with boundary given local boundary conditions.
We are able to treat completely all the operators, arising naturally in Rieman-
nian geometry, which admit local boundary conditions, but the general case is
still incomplete although we have a number of strong results in that direction.
This formula would contain both the Atiyah-Patodi-Singer twisted index
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theorem and the Atiyah-Bott index theorem (with strongly elliptic boundary
conditions) as special cases.

In discussing boundary conditions, the natural boundary conditions to
impose are much stronger than those considered by Atiyah-Bott. This is due in
part to the more delicate nature of the eta invariant in contrast to the ordinary
index and does pose technical difficulties we shall discuss in the third section.

The organization of this paper is as follows: the first section is divided into
three subsections. §1.1 gives a brief review of secondary characteristic classes
and the Chern character. In §1.2 we discuss Bott periodicity in the setting
which we will need it. We also discuss suspensions and the relation of the index
theorem to the twisted index theorem. In §1.3 we discuss the formula for the
twisted index for manifolds without boundary and obtain equivalent formulas
by suspension.

The second section is divided into four subsections. §2.1 gives notational
conventions and a review of the definition of ellipticity. In §2.2 we discuss
operators with leading symbols given by Clifford multiplication. In §2.3 we
show that the eta function is regular at s = 0 for such operators with elliptic
boundary conditions, while in §2.4 we derive a formula in K-theory for the
twisted index of such operators.

The third section contains two subsections. §3.1 deals with deriving a
suitable candidate in K-theory to generalize the formulas of Atiyah-Bott. In
§3.2 we show that this formula in K-theory has the same functorial properties
as the twisted index does.

The remainder of this introduction consists of a discussion of the eta
invariant in the context which we shall need. This paper is quite topological in
flavor and relies heavily on the results which we derived in [7] regarding the
analytical facts about such operators.

In particular, the analysis of [7] requires in an essential fashion that certain
bundles II . ( p) over the fiber spheres in T#%( M) be topologically trivial in a
very strong sense. We do not see at present how to remove this restriction in
order still to obtain all the requisite analytic results. The referee has kindly
informed us that the n-invariant for the signature operator in this context has
been discussed by Cheeger (Spectral geometry of singular Riemannian spaces, to
appear in J. Differential Geometry) in a context which can be viewed as
equivalent to that of global boundary conditions. It is unclear to what extent
such global boundary conditions would permit the analysis of [7] to be
extended; in particular  can jump by a noninteger amount under perturba-
tions of some boundary conditions as discussed in [7]. We would like to thank
the referee for bringing this matter to our attention.
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0.2 Analytical facts concerning the eta invariant

Let M be a compact manifold of dimension m with smooth boundary dM,
and let V be a smooth vector bundle over M. Let P: C*(V) —» C®(V) be a
partial differential operator of order d > 0. If dM = &, we let B be a suitable
boundary condition. Let Py denote the operator P restricted to the space of
smooth sections of V" satisfying the boundary condition B. Let y € M and let
(y, £) denote a point of the cotangent space T*M. Let p(y, £) be the leading
symbol of P. Suppose that

det(p(y, &) —it) #0 foré € T*M,t € R, (§,1)#(0,0),
and say that p is elliptic with respect to the imaginary axis. If dM +# &, we
impose a stronger condition on p and the boundary condition which will be
discussed in the second section.

Under these ellipticity conditions, the spectrum of P, is discrete. Each
generalized eigenspace is finite dimensional and consists of smooth sections to
V satisfying the given boundary condition. Let {A,} denote the eigenvalues of
P, repeated according to multiplicity; only a finite number of eigenvalues lie
on the imaginary axis. We define

a(s,P,B)= X X'— X (=A)7
Re(A,)>0 Re(a,)<0
as a measure of the spectral asymmetry of the operator Pg. This is holomorphic
in s for Re(s) > 0. 5(s, P, B) has a meromorphic extension to C with isolated
simple poles at s = (m — n)/d for n =0, 1,2, --. The residue of 1 at these
poles is given by a local formula [7].

The pole at s = 0 is of particular interest. In [7] we showed that if (P, B,) is

a smooth 1-parameter family of such operators and boundary conditions, then

d
e Res,_on(s, P, B,) =0,

which shows that the residue is a homotopy invariant. Let V(iR) denote the
finite dimensional vector space generated by the generalized eigensections
corresponding to purely imaginary eigenvalues. We define

s=0

1 ;
i(P, B) = % {n(s, P,B) — S Re s;=on(s, P, B) — dim V(iR)} ,
mod Z,

in C/Z. i(P,, B,) is differentiable in the parameter ¢ since we have corrected
for the jumps which occur as eigenvalues cross the imaginary axis. We showed
that d7(P,, B,)/de is given by a local formula in the jets of the operators
(P, B, P, B,).
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If the boundary of M is empty, then n(s, P) is regular at s = 0, [2], [6]. It is
worth noting that this does not follow from a local calculation as the local
formula for the residue at s = 0 does not vanish identically in general [5]. In
the second section of this paper, we will show that 7(s, P, B) is regular at
s = 0 for a suitable class of first order operators.

We can construct a nontrivial twisted index by taking coefficients in a
locally flat bundle. Let p: 7 (M) — GL(k, C) be a representation of the
fundamental group. If M is the universal cover of M, we define

V,=MXC*/m(M),

where 7,( M) acts on M by deck transformations and on C* by the representa-
tion p. The transition functions of V, are locally constant. V, inherits a
connection Vv, from M X C* with zero curvature. The holonomy of v, 1 just
p. Since the curvature of v, is zero, the rational characteristic classes of V,
vanish. This implies that V, is a torsion class in the reduced X-theory group of
M; ie., nV, =~ 1"* for some integer n.

Since the transition functions of ¥, are locally constant, we can define P, on
C*(V ® V,) and a boundary condition B, to be locally isomorphic to k-copies
of (P, B). (P,, B,) will also satisfy the given ellipticity conditions. The residue
of the poles of 7 is given by a local formula. Since (2,, B,) and k(P, B) are
locally isomorphic, any local formulas will be the same, so the two local
formulas cancel in the poles for n(s, P,, B,) — kn(s, P, B). This shows that
n(s, P,, B,) — kn(s, P, B) defines an entire function of s.

Define

ind(p, P, B) =1(P,, B,) — ki(P,B) € C, mod Z.
If (P, B,) is a smooth 1-parameter family of such operators, the same
cancellation of local formulas for locally isomorphic operators implies

d . _
=, ind(p, P, B)) = 0,

which shows that ind(p, P, B) is a homotopy invariant of (P, B).

One cannot lift ind(p, P, B) from C mod Z to C consistently in general
without imposing some additional structure. The bundle V/, is rationally trivial.
We suppose henceforth that V) is itself topologically trivial and choose a global
frame 5 for V,. This permits us to define k(P, B) acting on C*(V' ® V,) =
C®(V ® 1%). The two operators (P,, B,) and k(P, B) have the same leading
symbol. Define (P, B,) = &(P,, B,) + (1 — e)}(kP, kB). This 1-parameter
family satisfies the ellipticity conditions and

. 1 d .
1nd(p,P,B)=Of —- (., B,) de.
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Since the derivative is given by a local formula, this identity gives a lift of
ind(p, P, B) from Cmod Z to C and shows that ind(p, P, B) is given by a
local formula (which depends on the global frame 5 chosen). It should be
noted that different choices of global frames will in general give rise to
different liftings from C mod Z to C.

If dM = &, then the twisted index theorem of Atiyah et al. [2] gives a
formula for ind(p, P) in terms of secondary characteristic classes if m is odd;
the corresponding generalization for even m can be found in [6]. There is also a
formula in K-theoretic terms valid for general p. Since this formula is more
complicated to explain, we shall restrict our attention to the case in which ¥ is
topologically trivial. We refer the reader to [2], [6] for examples.

Before discussing the Atiyah-Patodi-Singer formula for ind(p, P, B) which
we will generalize, we first review the Atiyah-Bott and the Atiyah-Singer index
theorems. We fix a Riemannian metric on M. Let D(T*M) denote the unit
disk, and S(7*M) the unit sphere bundles of T*M, i.e., let

D(T*M) = {§€ T*M: [g<1}, S(T*M) = {¢ € T*M: [¢]=1}.

If dM = &, then S(T*M) is the boundary of D(T*M).

Let 2(T*M) be the fiber suspension of S(T*M). Z(T*M) is the unit sphere
bundle in T7*M ©@ 1. It can also be defined by taking two copies D . (T*M) of
the unit disk bundle and joining them along their common edge S(T*M). Let
N and S be the north and south poles of 2(7*M). N is the zero section to
D (T*M), while S is the zero section to D_(T*M).

We can describe the Atiyah-Singer index theorem using Z(7*M). Let
Q: C=(V)) » C=(V,) be an elliptic operator with leading symbol ¢ which
defines a map ¢: S(T*M) — END(V,, V,) from the sphere bundle of T*M to
the bundle of maps from ¥ to V;. Let Z(g) be the bundle over Z(T*M),

V1|D+(T'M) u VZ]D_(T"“M)’

where we use ¢ to identify V| with V; over the edge S(T*M).

Let TODD(M) denote the real Todd class of M. This is a complicated
polynomial in the Pontrjagin classes of T*M. TODD is a multiplicative class in
the sense that TODD(M, X M,) = TODD(M,) N TODD(M,). We refer to
[3] for details. Let ch(Zq) denote the Chern character of the bundle £q. Using
a suitable orientation of =ZT*M, which will be discussed in more detail later,
the Atiyah-Singer formula becomes

index(Q) = fz (T%M)TODD(M) A ch(Zq).
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(To be precise, there is an additional factor (—1)™ because of the orientations
chosen. We will discuss this in more detail in §2.3 and postpone until then a
precise discussion of this formula.)

To extend this to the case in which dM = &, we must impose elliptic
boundary conditions. If we restrict g to dM, then the boundary condition B
defines an explicit homotopy g, of the symbol to a symbol which is indepen-
dent of the fiber coordinate. Define M’ = dM X [-1,0] U M where we iden-
tify dM X {0} with the boundary of M; this sews on a collar. We use the
homotopy to extend g to a symbol g, defined on M’ such that gg(y, §) = gx(y)
is independent of the fiber coordinate £ € T*M for y € dM'. If index(Q, B) is
as defined in [1], then the Atiyah-Bott formula has the form

index(Q, B) = /;(T*M’) TODD(M) N ch(Zqy).

(t is worth noting that index(Q, B) is not dim(Ker Q) — dimKer(Q3}) in
general.)

Since this is not the form in which the Atiyah-Bott formula is most
commonly stated, it is worth digressing briefly to consider an alternate
formulation. Suppose first that dM = @, and that ¥, = ¥, = 1/ are trivial
bundles. We can interpret g: S(T*M) — GL(j,C). Let w =dg - g~' be the
Maurer-Cartan form and define:

Lok
Tch = %ckTr(ka_') forc, = (5{;) (_/;_—l—l)?ofl (r—12) 'ar.
(We will discuss these normalizing constants further in §1.1. This is the
transgression of the Chern character.) We pull-back Tch using g* to define
g*(Tch) as the sum of the odd-dimensional cohomology classes on S(T*M).
An easy application of Stokes theorem converts the Atiyah-Singer formula into

index(Q) :f - TODD(M) A g*(Tch).
S(T*M)
If dM # &, S(T*M) is not the full boundary of D(T*M). The homotopy ¢,
defines an extension of g to the restriction of the unit disk bundle over dM:
qz: D(T*M Yam —~ GL(j, C).

This defines gz on all of the boundary of D(T*M), and the Atiyah-Bott
formula can be expressed in the form

index(Q, B) = fd oy TODD(M) A gi(Tch).

We now consider the twisted index.
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Let P: C*(V) = C*®(V') have symbol p and let dM = & . If P is elliptic with
respect to the imaginary axis, let I1 . ( p) be the bundles over S(7T*M ) spanned
by the generalized eigenvectors of p, which correspond to eigenvalues with
positive /negative real part. (Since p has no purely imaginary eigenvalues,
IT . ( p) have constant rank and define smooth bundles.) In a suitable sense, P
is determined by the bundles II. (p) in much the same way that Q was
determined by Zq; we refer to [2], [6] for a more precise description of this
relationship. The virtual bundle 11, ( p) — II_(p) € K(S(T*M)) is an infini-
tesimal measure of the spectral asymmetry of P.

Let 5 be a global frame for ¥, and let v,(5) = « - § define the connection
1-form w € C*(T*M @ END(V)). Let

Tch(w) = Y ¢, Tr(w? 7).
k
Then
ind(p, P) = %L(T_M)Tch(p) ATODD(M) A ch(IL, (p) — II_( p)).

Since I, (p) @Il (p)=7V, ch(l, (p)— II(p)) = 2ch(l, (p)) — ch(¥).
Since ch(¥") does not depend on the fiber coordinate, it contributes nothing to
the top dimensional (2m — 1)-form which we integrate over S(T*M), so we
can express

ind(p, P) = L(T*M)Tch(p) A TODD(M) A ch(I1, ( p)).

Unfortunately, this theorem does not generalize directly to the case of
manifolds with boundary; a boundary condition does not define a homotopy
of p to an operator with symbol independent of the fiber through symbols
elliptic with respect to the imaginary axis. In §1.3 we will discuss a generaliza-
tion of this formula which has the form

ind(p, P) '[sz(T‘M
where j > 0, and where 2" will be defined in §1.1 and §1.2. We will use the
elliptic boundary condition to define a homotopy of Z p, which we shall denote
by Zpz. We emphasize that this homotopy is not the suspension of a
homotopty pp in general. This will provide the context in which to generalize
the Atiyah-Bott theorem.

In this paper we always work in the smooth category. Some of the ho-
motopies which we will construct are only piecewise smooth; we always
smooth out these continuous homotopies at the corners. To avoid complicating
the exposition, we will usually not explicitly mention such smoothings.

Tch(p) A TODD(M) A ch(I1, (S%p)),
)
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SECTION ONE

1.1 The Chern character and secondary characteristic classes

We first recall the definition of the Chern character. Let W be a smooth
vector bundle over some manifold N, and let v be a connection on W. If §'is a
local frame for ¥, let V5= w - 5'be the connection 1-form. The curvature is an
invariantly defined section of AX(T*M) ® END(W) which is defined by
Q =dw — @ N w. Define

(VL peaky,
Chk(v) - E; F TI'( )5
which is a closed 2k-form independent of the frame 5 chosen. The total Chern
character is given by

ch(v)=1+ch(v)+---+ch(v)+--- EH¥(N;C).

If v, and v, are two connections on W, we form v, = tv, + (1 — ¢)v,.
Let 8§ = w, — w,, then 8 is tensorial. The connection 1-form of v,is w, = 16 +
w,. If , is the curvature of the connection v,, by using the identity

dTe(69") =+ 2 To(0k)

we obtain (for further details see [4])

1d
chy(v,) = chy(Vo) =, [ = chy(,) dt = d(Tchy(vy, Vo)),

where

Tch R L T
c k(vl’vo) 2a (k__ 1), r 0 r .

This shows that the difference ch(v,) — ch,(¥,) is exact, so that ch(W) =
ch(v) € H*(N; C) is defined in cohomology independently of the connection
chosen. It is immediate that

ch(W, & W,) = ch(W,) + ch(W;), ch(W, ® W;) = ch(W;)ch(W).

The Chern character defines an isomorphism between K-theory with complex
coefficients and the even dimensional cohomology on N with complex coeffi-
cients.

Tch is the transgression of the Chern character and is independent of the
frame chosen. Suppose for the moment that both v, and v, are flat so that
2, = &, = 0. Choose a local frame so w, = 0. Then @, = § and

Q =di—6n80=0.
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Consequently «, = 18 and @, = td6 — 1?0 AN @ = (t — t*)§ A 0. As in the in-
troduction, we define the constants

i\* 1 1 k—1
¢, = (E) =] 1)!()[ (t =12 at,
so that

Tchy (v, Vo) = ¢, Tr(827 ).

We illustrate these ideas by establishing the equality of the two formulas
which we have given for the index of an elliptic operator. Let dM = & and let
V, = V, = 1* be the trivial bundle. Let Q: C*(1¥) -» C®(1¥) be an elliptic
complex. Let 5.. be global frames for Zq over a neighborhood of D .. (T*M) so

that 5 = g5, on the overlap S(T*M). Choose connections V. for =g so
vV.(5.)=0.Then Q. = 0on D. (T*M). Thus

index(Q) = f

TODD(M) A ch(v_) = [ TODD(M) A ch(V ., ).
S(T*M) DAT*M)

OnD,Q =0soch(v,)=ch(v,)—ch(v)=dTch(v,, v.). Stoke’s
theorem implies

index(Q) = f

TODD(M) A Tch(v, , V).
S(T*M)

Both connections have vanishing curvature near the equator S(7*M). The
transition function is given by 5= ¢5, so§ = dg - ¢”' and

Teh(V, , V) = ¢*(Tch) = S ¢, Tr((dg - ¢7')
which implies, as S(T*M ) = ~boundary(D_),

2k—-l)

>

index(Q) = fs (T*M)TODD(M) A g*(Tch).

1.2 Bott periodicity

It will be helpful to have a brief review of Bott periodicity from a slightly
nonstandard point of view to motivate the constructions we give in this and
later sections. We adopt the notational conventions:

[X, Y] = {homotopy classes of maps from X to Y}.

Vect, ( X) = {isomorphism classes of k-dimensional complex vector bundles
over X}. ’

GL(k, C) = {k X k invertible complex matrices}.

GL'(k, C) = {k X k invertible complex matrices without pure imaginary
eigenvalues}.
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U(k) = {k X k unitary matrices}.

U(*) = the limit of U(k) under the inclusions U(k) - U(k + 1) = ---.

H(k) = {k X k Hermitian matrices » with A> = I}.

Hy2k) = {h € HQk): Tre(h) = 0).

H () = the limit of H,(2k) under the natural inclusions

HQQk)-> HQk+2) > ---.

U(k) is a deformation retract of GL(k,C), and H(k) is a deformation
retract of GL'(k, C). U(k) and H(k) are compact; Hy(2k) is one of the
connected components of H(2k).

Let X be a compact simplicial complex. The suspension £( X) is defined by
identifying X X {#/2} to a single point ¥ and X X {-%/2} into a single point
S in the product X X [-w/2,7/2). Let D.(X) denote the northern and
southern “hemispheres.” Then D, (X) N D(X) = X.

N

D,(X)
Z(X)

D_X)

S

If W is a vector bundle, choose a fiber metric on W, and let W be the
fiberwise suspension of the sphere bundle S(W). We may also identify ZW
with S(W @ 1).

Let 2k > dim(X) and identify IE'O(X) with Vect, (X). If W € Vect, (X),
there exists W’ € Vect,(X) such that W® W’ =~ 1. W’ is unique up to
isomorphism, and we can choose the isomorphism W @ W’ ~ 12* so that W
and W’ are orthogonal subbundles of 12%. If x € X, let 7. (x) be orthogonal
projection on W and W’ respectively in 14, and let p(x) = 7, (x) — 7(x).
This defines a map p: X — Hy(2k). Conversely, given p: X — Hy(2k), we can
let W =11, be the span of the positive eigenvectors of p(x); W is the range of
1(1 + p(x)) = 7 (x). This identifies

R(X) = Vect, (X) =[ X, Hy(2k)].

Similarly, if g: X - U(k), we let W be the bundle over 3 X which is defined
by glueing D, (X) X C* to D_(X) X C* along the edge X X C* using the
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clutching function g¢. This identifies Vect (£X) = [X, U(k)]. We now define
two suspension maps:

=[x, U0(k)] -[2X, Hy(2k)], 2:[X, Hy2k)] -[=X,U(2k)],
which will be isomorphisms and represent Bott periodicity. Let p: X .~ Hy(2k)
and let ¢: X — U(k). Define
2p(x,0) = cos(8)p(x) — isin(8)1,,,
sin(4)1, cos(8)g*(x)

2q(x,0) = cos(8)q(x) —sin(@)I,

It is immediate that these maps are well defined with the indicated ranges.

Lemma 1.2.1. Let p=23q: ZX — Hy2k). Then the bundle 11, (p) is
represented by the clutching function q.

Proof. Leta € C* Then (I + p)(&) € I1, (p). This is not (J) for a # 0
and 6§ > -7 /2, and defines a frame for [I, (p) on 2, (p) on ZX minus the
south pole S. Similarly, the map $(1 + p(S)): I, (p)(x, 8) = Il (p)(S)is an
isomorphism for (x, §) # N. The composition of these two isomorphisms when
restricted to the equator X gives the clutching function which sends

a=3(5 ) +nE0(§) =3 sl

This map is homotopic to ¢, and our proof is complete.

In the introduction we defined Zq to be the bundle with clutching function
g. To avoid notational confusion we replace that by I (Z¢q) henceforth.

3gq is the element corresponding to ¢ when we identify [X, U(k)] =
Vect (Z2X) = [2X, H(2k)]. We now compute the double suspension:

, ~ sin(f) cos(f){cos(¢)p(x) + isin(¢)}
Zp(x0.6)= (cos(a){cos(¢)p(x) — isin($)) ~sin(6) )
2. _ [ cos(B)sin(¢) — isin(8)  cos(8)cos($)q*(x)
2 q( NN 0) ( coS(a)COS(¢)q(x) -cos(ﬁ)sin(c[;) — iSin(g) ) ’

where ¢ is the variable of the first suspension, and 8 is the variable of the
second suspension. Bott periodicity is the assertion that the following two
maps are isomorphisms in the stable range:

32: Veet (X) =[ X, Hy(2k)] = Vect,,(Z2X) =[32X, Hy(4k)],
32: Vect (2X) =[ X, U(k)] = Vect, (23X) =[2%X, U(2k)].
1t is convenient for later work to extend the ranges and domains:
3: [X,GL'(k,C)] »[2X,GL(k,C)],
3: [X,GL(k,C)] -»[2X,GL'(2k, C)].
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If p: X - GL'(k,C), let II.(p) be the subbundles of 1* spanned by the
generalized eigenvectors of p corresponding to eigenvalues with positive /nega-
tive real part. If ¢: X — GL(k, C), then ¢ is the clutching function of the

bundle II, (Zg).
To specialize to the case of a sphere X = S, we introduce coordinates
X = (X}, X,)ES y=(x,x,,,) €S and z = (y, x,,,) €S""?, and

extend p: " —» GL'(k,C) and ¢: S” - GL(k,C) to R"*! to be homogeneous
of degree 1 taking values in the space of k X k matrices. Then it is immediate
that

2p(y) =p(x) —ix, o,

=[5, )
4(y) = ( o "_()) |
S%(z) = (:Z:l)—ixnn ‘ix(i?_ix +2)’

It is convenient to rewrite =2p slightly. If we conjugate by the matrix (*,}) then
=2p is replaced by the homotopic matrix:

(P(x) (X, + ixn+2))

~i(X,y — iX,in)  p(x)

_ (p(x) exp(i(8 + 7/2))
exp(~i(6 + 7/2)) -p(x) ’

where x, , + ix, , = exp(if). It is clear this matrix is homotopic to the
matrix in which we replace exp(i(8 + 7 /2)) and exp(-i(8 + #/2)) by exp(if)
and exp(-if#) so =?p is homotopic to the matrix:

(p(x) Xp T ixn+2)

Xpr1 = Xpi -p(x)

=P(x)®((1) ?I)ernﬂ((} é)+xn+2(0' (l))

We suspend again to conclude:
Lemma 1.2.2. Let p: 8" — GL'(k, C). Then the following hold.

(@) 2Zp = p(x) — ixp41.

(b)
= (3 HO )

p(x) — X,y Xaio
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This is homotopic to the matrix
I 0 0 I 0o
(g Ot aal] g)rualS §)
(©) =%p(z, x,,.. ;) is homotopic to the matrix
I 0 0 I 0 i -i 0
p(")®(o -1)+x"+‘(1 o)+x"+2(—' 0)+x"+3(0 -i)'

We can now describe Bott periodicity on spheres. Recall that:

nU(k) = {O if n is even,

Z ifnisodd,
n_ | Z ifniseven,
Vect, §7 = {0 if nis odd,

provided that 2k > n is in the stable range. First suppose n = 1, and let
g(x) = x, + ix; = exp(if) generate 7\(S') = Z. Then we compute:
[ xamixy xo—ixy \ (w5 F
Z(x) = (xo +ix;  —x, — ix3) B (U —UW)’

for w = x, + ix, and v = x, + ix,. If we multiply this matrix on the left by

9L), we convert =%g to the homotopic matrix () which has values in
SU(2) = S°. The induced map $* - S? is a diffeomorphism and consequently
generates m,S°® = m,SU(2) = mU(2) = Z. This shows by explicit calculation
that 2% 7, S' - mU(2) and =2 Vect (S2) — Vect,(S*) are isomorphisms.

To generalize these isomorphisms, we introduce Clifford algebras. Fix n = 2k
and let {eg," - -,e,} be a collection of 2% X 2% self-adjoint matrices satisfying
the relations e;e; + e;e; = 28;; where §,; is the Kronecker symbol. If n = 2, we
can take eq = (} °)), ¢, = (¥}), and e, = (°;{). More generally, we can take the
matrices of the spin representation.

The dimension of the representation space is 2*. Since this is the minimal
dimension possible, the center e, - - - e, = *+i*I is scalar.

Lemma 1.2.3. Let {e,,---,e,} be Clifford matrices where 2k = n. Define
p(x) = x40+ -+ +x,,: S" > Hy2%). Then 11, p generates Ky(S™) = Z

Proof. We remark that sometimes Clifford matrices are chosen to satisfy
the commutation relations e;e, + e,e; = -28;,. Such matrices are skew-sym-
metric and related to the convention which we have chosen by a factor of y—1.
We also note that in general such maps p(x) arise as the symbols of elliptic
complexes as we shall see later.

It is clear p(x)* =|x I = I. Since ese, + e,e, = 0, Tr(e,) = 0 so Tr p(x)
= 0. Thus in fact p: §" — Hy(2¥) is trace free. II, ®II_ is the trivial bundle
on S”. We project the flat connection on the trivial bundle to define connec-
tions v, on I1. . We wish to compute ch,(I1 ). SO(n + 1) acts transitively
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on S” and preserves the norm |x*. p(x) is defined invariantly by the con-
dition p(x)? =|x "I which is a coordinate free representation. Thus the group
SO(n + 1) also acts on II . to preserve all the structures. Since everything is
equivariant, it suffices to compute at the point 4 = (1,0,---,0). Let 5, be a
basis for IT, (A). Let s{x) = 7, (x)s,. 5(x) is a basis for I, (x) for x # -A.
We use the local frame §5(x) to compute the curvature:

v,.v,.s(x)=a,d(n,.d(7,.s,)) =7, dn, d7n.5,.
Since 5(A) = 5, this shows that the curvature at A4 is given by
QA) =7, dn,dr, =11 + ey edx, + - +e,dx,).
Consequently
QA)=n27"" (1 + ey )(e, -+ -e,)dx, A -+ Ndx
= x=i*n127" (1 + ¢y )d vol( A4).
Since Tr(1 + e,) = 2%, this shows that
ch, (2) = =n127"" 1227 ) * (k1) 'dvol(4) = =vol(S")™" - dvol( 4).

Consequently

n

f ch(II, ) = =1.
Sﬂ

We note for later use that if {ef, -, e;} are self-adjoint matrices which obey
the Clifford commutation relations and if Tr(eg - - - e;) # 0, then II, will be
nontrivial. The computation is similar and therefore omitted.

This shows that I1 is nontrivial. If W is any vector bundle over S, then the
Atiyah-Singer index theorem for the spin complex with coefficients in W shows
that

index(spin,, ) Zf ch,(W)e z.
Sﬂ
Thus the map ch,: Ky(S") - H*(S") = Z is an isomorphism which shows

that IT, is the required generator. Hence the proof of the lemma is complete.
Given {e,,- - -,¢,} we define

e, = ((1) —Ol) ®e, forr<n,
4 —_— O -I 7 R 0 j
el = (1 0) ®Li, e ,= (_i (’)) ® L.
The {ef, - -,e..,} are 2¢*1 X 2¥*1 Clifford matrices. It is immediate that

22p(z) = xq4ef + -+ - +x,el + x'el ., + x"e,,,. This implies that ? takes a
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generator for K (S™) to a generator for K,(S"*?) and proves

Lemma 1.24. =% K (S") > K(S"*?) and 2% @, U(x) - 7, U(*) are
isomorphisms.

We constructed explicit generators for K;S” in Lemma 1.2.3. By suspending
these generators, we construct generators for the homotopy groups of the
unitary group as follows.

Lemma 1.2.5. Let 2k = n, and let {e,," - -,e,} be 2% X 2k Clifford matrices.
Set g(x) = x4eq + ,- -, +x,e, — ix, . Then q generates =, ,U(2*).

We remark in general that given a linear map p(x) with p(x)? =|x "I that
the bundles I1 . ( p) are defined and [ ch, IT, p € Z. The natural connections
on these bundles actually have harmonic curvatures as are discussed in [8].

1.3 Orientation of 7*M, " T*M, and formulas for ind(p, P) if dM = &

Let y = (y,- - *,,,) be local coordinates on M, and let £ = (§,,---,£,,) be
the corresponding dual fiber coordinates on T*M. It is customary to orient
T*M using the simplectic orientation on T*M. Let

Wy = dyy NAE N - Ndy,, N dE,,
define the orientation of T*M. If N is the outward pointing normal on
S(T*M), we orient S(7*M ) by taking the orientation of Stokes theorem;
ﬁ/\wim—l = Wy~

For example, if m =1 and M = §', then S(T*M) =M X {1} UM X {-1}
has the orientation 4§ on M X {-1} and -d# on M X {1}.

Let u = (u,, - -,u,) be the natural coordinates on R*. Let w,,,,; = @, N
du, N -+ Ndu, define the orientation on 7*M @ 1%, and orient ZT*M =
S(T*M ® 1¥) so that N AwS,, ;| = @,,,4, Unfortunately, the simplectic

orientation on T*M is not really the correct orientation from the point of view
of the index theorem, and it would probably be preferable to take the
orientation given by the negative simplectic structure. Let Q: C*(V,) » C®(V,)
be an elliptic complex over M with symbol ¢. Define

\ ,
2q(¢,u) = (’; Zu): T*M & 1 > END(V, ® V).

Then the transition function of I1, Zq is ¢, and the Atiyah-Singer index
theorem becomes

index(Q) = (—I)MLT‘MTodd(M) A ch(Il, Zq).
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We suppressed this sign in the introduction, because we had not discussed the
orientation conventions at that point.

We illustrate this formula with a specific example which we shall need later.

Example 1.3.1. Let M = T, be the flat torus, and U a holomorphic line
bundle of Chern class 1. Identify A%(T*M) = A%(T*M) with the trivial line
bundle. Let Q: C®(U) - C=(U) be the Dolbeault complex with coefficients in
U, Q = 3,. The index of Q is 1. Since M is flat, TODD(M) = 1. Modulo a
constant factor, the symbol of Q is multiplication by (£, + i£,). Let

_ u i) (10 0 1 0 —i
P(g’“)‘(glﬂgz —u )_”(0 -1)+£‘(1 0)+£2(z’ 0)'
Then 2q(&, u) = p(§, u) ® 1,. We compute

j TODD(M) A ch(I1, (£q)) :j ch(II, p) A ch(U).
S(T*M) S(T*M)

Topologically, Z(T*M) = T, X S%. The orientation on T*M ® 1 is dy, N d§,
Ndy, NdEy N du = —dy, Ndy, Nd§, NdE, Ndu, so this identification re-
verses the orientation. Since the integral of ch(U) over T, is 1, we must
compute —[g2 ch(I1, p). We argue as in the first section that this is just

s 5{(1 o) (3 7)o S =

which is correct.
The Atiyah-Patodi-Singer formula expresses:

ind(p, P) = (—l)mj;(T*M)Tch(p) A TODD(M). A ch(T1, p).

Again, it is helpful to illustrate this formula with a specific example:

Example 1.3.2. Let m = 1 and let P = —i3 /360 on the circle S' = [0,2x].
Let p, be the representation of 7, given on the generator by e2”‘. Since the
locally flat section defining v, is given by s(8) = e, we compute v,() =~
ied@ and consequently Tch(p) = ed/2n. S(T*M) = S' X {1} U §' X {-1}.
The symbol of P is just multiplication by the dual variable &, so ch(Il,.p) =1
on S' X {1} and 0 on S' X {~1}. The orientation on S X {1} is —d#f, so
multiplying by (-1)" = —1 cancels this sign and gives

ind(p, P) :j;l I}Tch(p) Iﬁ%dﬂ =

x{

We can also compute this index directly. P, = ¢/*Pe~s = P — ¢, Thus

n(s, P,) = sign(n —¢)|ln — e|_s =3 {(n=e)" —(n+2e)”} +e&7,

nez n>0
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provided that ¢ is small and positive. Differentiating this we get

Do) =s[ 3 (im0 (T e,

n>0

Comparing this with the ordinary zeta function gives
d
Eﬂ(o, PE) =2.

Since (s, Py) = 0, this implies n(0, P,) = 2¢ and ind(p, P) = .

The following combinatorial formula relates the twisted index formula and
the index formula.

Lemma 1.3.1. Let M, and M, be manifolds without boundary. Let V, and V,
be vector bundles over M,, and let V, be a vector bundle over M,. Let

q: S(T*M,) -» END(V,,V,) and p:3/(T*M,) - END(V;)
be symbols for j = 0. Assume that q is elliptic and that p has no purely imaginary

eigenvalues. Extend q and p to T*M, and T*M, ® 1/ to be homogeneous of
orders v, > 0. Define the symbol

* .
r= (Z Zp): T*(M, X M,) ® V > END((V, ® V) ® 3),
which is elliptic with respect to the imaginary axis on Z/(T*(M, X M,)). Let p be
a representation of m(M,) such that V, is topologically trivial. Extend p to
7 (M, X M,) so that V, is independent of the first coordinate and such that the
global frame is independent of the first coordinate. Then

j . Tch(p) A TODD(M, X M,) A ch(II, (r))
ENTHM X M)

- TODD(M,) A ch(IL, (Zq))
S(T*M))

f_ Tch(p) A TODD(M,) A ch(IL, ( p)).
BAT*M) \

Proof. If j = 0 and if g and p are polynomials of the same degree, then this
is just the assertion that ind(p, R)(-1)" = ind(p, P)(—1)™ index(Q)~1)™-.
This follows from the identity {(s, R) = {(s, P)index(Q) and {(s, R)) =
{(s, P,)index(Q) which was discussed in [2], [6].

It is clear that the degrees of homogeneity do not matter, so we take
v, = v, = 1. We smooth off the extension to be identically zero near T*M, so
that everything is smooth. We also note that TODD(M, X M,) = TODD(M,)
A TODD(M,). We shall give a combinatorial proof of this lemma rather than
attempting to extend the proof given above for differential operators to the
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pseudo-differential case to keep the present discussion as self-contained as
possible. The orientations are crucial in our discussion, so we pay unusually
careful attention to them in what follows.

We choose local coordinates

(x]a“'rxn,g]a""gn) ET'*(MI)a
()’1,' N "ym,§]9" T m° uls' * 'suj) € T'*(M2) @ lj'

If ¢, > 0, then d¢, points outwards, so the orientation of Z/(T*(M,; X M,)) is
given by
—dx, NdEN - Ndx, NdE, Ndyy Ndyy, NdS, N -2 Ndy,, N dS,

Nduy N -+ Ndu,.

We parametrize Z/(T*(M, X M,)) = S(T*M,) X [0, 7 /2] X Z/(T*M,) in the
form
(cos(8) - £,sin(8) - {,sin(8) - u),
where [£f =|¢P + u?=1. At the point § =7/4, £=(1,0,---,0), ¢{ =
(1,0,- - -,0); this gives the orientation
dx, N dB Ndxy Ndg, N -+ Ndx, N dE, N dy, A dy, A d,

N Ny, NdS, N duy N - Ndug.

We define

sin()  cos(8)q*
= ® - ® .
’ cos(f)g -sin(8) P=299®p

Consequently r has no purely imaginary eigenvalues, and
I, (r) =10, (2¢) ®I1, (p) ® II_(Zq) ® I1_(p).
ch(I1, (p)) + ch(I1_(p)) = ch(IL, () ® II_(p)) = ch(¥;).

Since ¥, does not depend on the fiber coordinates (&, ), we may replace
ch(1I_( p)) by —ch(I1, ( p)) without changing the integral. Similarly, we may
replace ch(II (2g)) by —ch(Il, (2q)) without changing the integral. This
expresses

Tch N TODD(M, X M,) N ch(II
L’(T*(MlXMZ)) (p) (M, ,) A ( +(’))

=2 TODD(M,) A ch(TL, (=
fsli)xwﬂ] (M) A ch(IT, (Zq))

a8 Tch(p) A TODD(M,) A ch(I1, p),
TAT*My)
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where we use the orientations on S(7T*M,) X [0, 7 /2], and Z/T*M,, which
agree with
—~dx, NdO Ndxy NdE, N - Ndx, N dE,,
—dy, Ndy, Nd§, N - Ny, dE, Ndu N - Ndu
atd =a/4,{=(1,0,---,0)and { = (1,0,- - -,0).
We wish to extend this integral to range over [-7/2, 7 /2]. If we replace 8 by
-0, we change the orientation and replace Zq by
—sin(#) cos(8)q*
cos(8)q sin(8) ’
Conjugating this with the matrix (}, ;) we find that this is equivalent to
-sin(@)  —cos(8)q*
—cos(8)q sin(@)
If we replace r by -r, then we interchange the roles of I, and II_. If we
replace IT_ by Il again, we must change the sign. This sign change takes care

of the change of orientation, so the integral over [-7/2,0] is equal to the
integral over [0, 7 /2). Therefore

m>

2 TODD(M,) A ch(I1, (2q))
S(T*M ) <[0, 7/2]

:/ TODD(M,) A ch(I1, (Zq)).
S(T*M)X[~a/2, 7/2]
We identify S(T*M,) X [-7/2,7/2] with ET*M, by setting (£ u,) =
(cos(8)&, sin(#)). This gives the orientation
—dx, Ndxy NdE; N -+ Ndx, N dE, N du,

which is the orientation for ZT*M, to that we have chosen. This completes the
proof of the lemma.

This doubling argument in extending the parameter range will play an
important role in the second section, when we discuss ind(p, P, B) for mani-
folds with boundary. Unfortunately, the formula

ind(p, P) = (_1)"‘/S(T‘M) Tch(p) A TODD(M) A ch(II, (p))

does not generalize to manifolds with boundary. We must suspend this formula
in order to obtain a suitable extension if dM #* &.

Theorem 1.3.2. [Let j be a nonnegative integer. Let dM = . Let p be a
representation of w (M) such that V, is topologically trivial. Let P be a pseudo-
differential operator on C*(V), which is elliptic with respect to the imaginary
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axis. Define
ind.(p, P) = (=1)"
Ao Y=
Then ind(p, P) = ind (p, P).
Proof. If j =0, this is the formula proved in [3], [6] We proceed by
induction on j. Apply Lemma 1.3.1 to M, = T, and M, = M, where T, is the
flat torus. Let

Tch(p) A TODD(M) A ch(IT, (22/p)).
)

22 Jj—2 p q*
r= 4 )
g -7
where ¢ is the symbol of the Dolbeault complex on 7, with coefficients in a
holomorphic line bundle of Chern class 1 as discussed in Example 1.3.1.
Lemma 1.3.1 implies that
ind;,_,(p, R) = index(Q)ind,_,(p, P) = ind(p, P)
by induction. We compute directly. Let (x;, x,, v, v,) be coordinates on T*T,

and let (Y, Vs €157 *2& U157 -+, Ua ;) be coordinates on T*M & 1%/72,
Then

S22 v, — iv
,— p 1 2 ) ® 1.

v, +iv, -Z¥ 7%

Topologically, T*(T, X M) @ 12/72 = (T*M & 1¥/) X T,. However, the orien-
tations

dx), N dvoy Ndxy Ndoy Ndyy NdE|N - Ndy,, NdE, Ndug N - Nduy g,
dyy Nd§y N - Ny, NdE, Ndug N - Nduy oy N doy N doy N dxy N dx,
do not agree. We replace v, by —v, to take care of the flip in orientation so that
327 p, +iv,

v, —iv, -2¥7?p

r= ®1,=3Yp®1,.

Therefore we compute
ind(p, p) = ind,_((p, p) = ind;_,(p, R)
=(—1)" Tch(p) A TODD(M) A ch(II, (2%/p)) - | ch(U),
D" o, TR () A eh(IL, (22p)) - [ eh(U)

= indj(pa P)

which completes the proof.
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We note that if V is topologically trivial, then the integral can also be
rewritten using Stokes theorem as

- Tch(p) A TODD(M) A (2277 1p)*(Tch).
22N TM)

In the introduction we remarked that the twisted index theorem implies the
Atiyah-Singer index theorem as a special case. Deriving the index theorem
from the twisted index theorem is in a sense circular since the index theorem
was used to prove the twisted index theorem in the first instance. We present
the derivation nevertheless because it is instructive and illustrates the results of
this subsection.

Let Q: C*(V)) —» C*(V;) be an elliptic pseudo-differential operator over a
compact Riemannian manifold M, without boundary. We may assume without
loss of generality that @ is first order. Suppose for the moment that Q is in fact
differential. Let P = —id /96 on C*(S"). Let M = M, X §' and let R = (5 %)
be the twisted operator over M defined earlier. Let g generate 7(S') = Z and
let p(g) = exp(2mic) for € real. We extend p to be trivial on 7, (M,;). Then

ind(p, R) = ind(p, P)index(Q) = eindex(Q)
by Example 1.3.2. Furthermore

ind(p, R) :f

TODD(M ) A Tch(p) N ch(II, r)
S(T*M)

= TODD(M,) A ch(I1, =q) f Tch(p) A ch(TI, (p))
I(T*M)) S(T*S)

=e- TODD(M,) A ch(I1, S¢) = ¢ - index(Q)
S(T*M)

by the combinatorial argument given in the proof of Lemma 1.3.1. This
identity true (mod Z) for all values of ¢ implies

index(Q) = f

TODD(M,) A ch(I1, 30),
S(T*M))

which is the Atiyah-Singer index formula.

If Q is not differential, then R is not a pseudo-differential operator on
M, X S'. There is a technical trick to handle this case, and we refer to [6] for
details to avoid unduely complicating the exposition. The Atiyah-Singer theo-
rem can be viewed as a map

ind: K(Z(S(T*M))) - Z,
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and the twisted index can be interpreted as a map

ind(p,*): K(S(T*M)) > R/Z.
By using Bott periodicity, one can relate K(S(T*M)) to K(Z*(S(T*M))). By
using product formulas as discussed, it is possible, in a certain sense we shall
not make precise, to regard the one formula as the suspension of the other.

SECTION TWO

We now return to the case of dM * @. Although we shall be primarily
concerned with the first order case in this section and shall postpone a detailed
treatment of the higher order case until the third section, we first review briefly
the definition of ellipticity that we shall be using.

2.1 Notational conventions

Let M be a compact Riemannian manifold of dimension m, and let
Y =(y°",¥,) be a system of local coordinates on M. Let dM denote the
smooth boundary of M. Near dM, we choose coordinates y = (x, r) for
x ={(x},"",x,_,)so M = {y: r(y) = 0}. We further normalize the choice of
coordinates by requiring that 9 /dr is the inward unit normal on dM and that
the curves y(r) = (x,, r) are unit speed geodesics for any x, € dM. If we use
the inward geodesic flow to identify a neighborhood of dM in M with
dM X [0, ry), we define a splitting T(M) = T(dM) ® T(R) and a dual split-
ting T*(M)=T*dM)® T*(R). Let §=({,z) for {=({, --.§{,.—1) €
T*(dM). If P: C®(V) - C®(V) is a differential operator, let p(y, &) =
p(x, r, §, z) be the leading symbol of P.

If dM = 3, it suffices to assume det( p — ir) # 0 for (&, ¢) # (0,0) as an
ellipticity condition. For manifolds with boundary, however, the corresponding
analysis is much harder, and it was convenient to work with the heat equation
in our earlier paper [7]. Consequently, we must impose a stronger condition of
ellipticity in this case. Let

€= {x € C: [Im(A)|=|Re(A)];

this is a 45° cone about the imaginary axis. We say that P is elliptic with
repsect to Cif det(p — A) #= 0 for (¢, A) # (0,0) and ¢ € T*M, X € C,

A graded vector bundle U over dM is a bundle U together with a fixed
decomposition into bundles of the form U= U, ® --- ®U,_,. We permit
U; = {0} in this decomposition. Let W be the bundle of Cauchy data over dM.
W consists of d~copies of the restriction of V to dM and inherits a natural
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grading where W, = V,,, represents normal derivatives of order j. Let D, =
~id/9r, and ¢; = (D,)fqu for ¢ € C*®(V'). Define the natural map y: C*(V)
= CH(W)bY ¢ = (0,7 *»Pa—1)-

Let W’ be an auxiliary graded vector bundle over dM, and let B: C*(W) —
C*(W’) be a tangential differential operator. Decompose B = B;; for B, :
C>(W,) » C*(W)). B is of graded order v if v is the smallest integer such that
ord(B,;) < v +j — i for all (i, j). We define the graded leading symbol of B
by

0 iford(Bij)<,,+j_l.’
O(Bij) if OI'd(B[.j) =v+j—i

o¥(B);; = b, = {

We assume henceforth that dim(W) = d - dim(U) is even. Let W’ be an
auxiliary graded vector bundle over dM of dimension % dim(W). Let B:
C®(W) - C*(W’) be a tangential differential operator of graded order 0.
Consider the ordinary differential equation

P(x,0,¢, D)o(r) =A¢p(r) and Lim¢(r) =0,
r—oo
cer(dM), A€, (¢ A)#(0,0).
We say that the pair (P, B) is elliptic with respect to € if P is elliptic with
respect to C and if for every such ({, A) and ¢’ € W’ there is a unique solution
¢ to (2.1) satisfying 63(B)(x, {)yd = ¢'.

There is an alternate formulation of this condition of ellipticity which is
purely algebraic in nature and will prove useful in what follows. Let W_. (£, A)
be the subsets of W corresponding to Cauchy data of solutions of (2.1)
vanishing as r -+ c0. Decompose p(x,0,¢, z) = Z,p, (x, $)z/ where p; is
homogeneous of order j in {. We rewrite the ordinary differential equation of
(2.1) as a first order system in the form

-i(3/3r + 7(§, 1)) ¢ =0,

where 7 is the d X d matrix

(2.1)

0 -1 0 0 0
0 0 -1 0 0
;=i
0 0 0 0 =1
-1 _ -1 -1 -1 -1
Dy (Pd }‘) PoPy—1 PoPy4—2 7 PoP2 PoD

If 7¢ = —iz¢, then 2, p,_;(x, $)z%p, , = Ap,_,. This implies that = does not
have any purely-imaginary eigenvalues for ($, A) # (0,0) if P is elliptic with
respect to C. It is clear from this description that W ({, A) are the span of the
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generalized eigenvectors of 7, which correspond to -eigenvalues with
positive /negative real part, and therefore that W, ({, A) define vector bundles
over T*(dM) X € — (0,0). Let A = it and let T1 . (7)({, t) = W, (§, it) define
bundles over I(T*dM); these bundles will be important in what follows.

The ellipticity condition can be rephrased in this language as the condition

6%B(x,{): W, (¢, X) > W is an isomorphism
for (¢, A) #(0,0)¢ € T*(dM), A € C.

In particular, the existence of such boundary conditions implies that the
bundle I (1) over Z(T™*dM) is topologically trivial. We will construct opera-
tors in the next subsection, for which this is not true and which therefore do
not admit such boundary conditions.

2.2 Operators with symbol given by Clifford multiplication

We restrict for the remainder of the section two to first order operators. B is
a 0™ order boundary condition and 7 = ip;'( p(x,{) — X). Choose a Rieman-
nian metric on M, and let |£] be the length of § € T*M. We say that the
leading symbol of P is given by Clifford multiplication if

p(y, §)* =|£P1, e, P? = —g"/3%/8x,9x; - I + lower order terms,
where we adopt the convention of summing over repeated indices. Such an
operator is automatically elliptic with respect to € since the eigenvalues of p are
*|£|. Equivalently, let {e,,---,e, } be a local orthonormal frame for T*M. If
M is oriented, we shall suppose e, N --- Ae,, = w,, is the orientation form on
M. Expand £ = §,e; € T*M and let p(y, £) = &, p,(¥). The leading symbol of
P is given by Clifford multiplication if p; p; + p;p; = 26,;, or equivalently if
{py:- D} 1s a set of Clifford matrices.

Such operators arise naturally in differential geometry.

Example 2.2.1. Let V= @, A?T*M be the bundle of all differential forms
and let P = (d + 8).

Example 2.2.2. Let M be a holomorphic manifold, and let ¥V =
@, A>P(T*M) and let P = V2(3 + &").

Example 2.2.3. Let M be a spin manifold, ¥V = A(M) be the total spin
bundle, and P be the Dirac operator.

Example 2.24. Let M be an oriented odd dimensional manifold, and let *
be the Hodge operator. Let V= &, A?P(T*M) be the bundle of even differen-
tial forms. Let P = @, "~ D/%(~1)?*'(+d — dx); this is the operator which
appears in the Atiyah-Patodi-Singer signature theorem for manifolds with
boundary.
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Example 2.2.5. Let W be a coefficient bundle, and let P: C®(V) - C®(V)
have leading symbol given by Clifford multiplication. Let Pp,: C®(V ® W) >
C™(V ® W) have leading symbol p ® 1,,.. P, is well defined modulo 0* order
terms.

Let ext(§¢) denote exterior multiplication, and int(§) the dual map interior
multiplication. Let ¢(§) = i(ext(§) — int(§)) be Clifford multiplication; this is
the leading symbol of (d + 8). Let Clif(7*M) be the universal tensor bundle
generated by T*M subject to the relations

§ &+ 6-& = 2(51, 52)-

Since c(¢)? =]€P1, it extends to an algebra morphism c¢: Clf(T*M) —
END(AT*M). If we send 8 — ¢(8) - 1, we define a vector space isomorphism
between Clif(T*M ) and A(T*M); this is not, of course, an algebra morphism.

If the leading symbol of P is given by Clifford multiplication, then p extends
to an algebra morphism p: Clif(T*M ) — END(V'). Conversely, given such an
algebra morphism or representation, we can construct an operator P with
symbol p. If we fix a connection ¥ on V, then P can be defined using the
diagram:

P:C™(V) - C(T*M ® V) 5 C=(V).

It is worth noting that in this situation we can always choose an inner product
on V, so p(y, §) is unitary and Hermitian for | {|= 1, and consequently we can
always find a formally self-adjoint operator P with symbol p.

Next dM we choose a local orthonormal frame, so e,, = dr is the normal
covector. We expand p(y, £) = p(x, r, §, z) = Z™,'¢, p; + zp,,. Recall that

(¢, A) =ip,(p(§) —N) forA€C,¢ e T*(aM), (§, X) #(0,0).

IT. (§, A) are the complementary subbundles of V, which are spanned by the
eigenvectors of T corresponding to eigenvalues with positive,/negative real part.
(We will also denote these bundles by IT., (v) when it is necessary to dis-
tinguish them from other similarly defined bundles.)

Since P is a first order operator, a boundary condition B is just a 0% order
map B: V — W’ where dim(V) = 2dim(W”) such that the null space N(B)
does not intersect I, . Suppose §j € END(V) satisfies

p*=1,pp(§) + p(£)p =0.
This is equivalent to assuming { §, p,,- - -,p,,} forms a set of Clifford matrices.
Define g = ip,, p, and note that {q, p,., ip,,P1,"* *»iP, Pm—1 fOorms a set of
Clifford matrices, so that ¢ anticommutes with 1. Let B, = 3(I = q) be the
projection on the =1 eigenspace of g. B, will be said to be a Clifford
boundary condition.
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Lemma 2.2.1. Let the leading symbol of P be given by Clifford multiplication
and let B be a Clifford boundary condition. Then (P, B) is elliptic with respect to
the cone C.

Proof. We recall that 7({, A\) = ip,, p(¢) + i\p,, since p;' = p,,. Since 7
anticommutes with ¢, these two operators do not have any common nonzero
generalized eigenvector. Assume B = B for the sake of definiteness. N(B) =
II_(g) and II (¢) N II.(7) = {0}, so B is injective from II_ (7) to II  (gq)
and hence bijective as both these spaces have dimension % dim(¥). We note
that if P is formally self-adjoint, then (P, B) is self-adjoint if p (or g) is
self-adjoint.

We can now state a basic existence result.

Lemma 2.2.2. Let the leading symbol of P be given by Clifford multiplication.

() If dim(M) = m is even, and M is orientable, then there always exist
Clifford boundary conditions for P.

(b) If dim(M) = m is odd and if Tr(p, - - - p,,) 0, then there do not exist
any boundary conditions so that (P, B) is elliptic with respect to the cone C. In
particular, there do not exist such boundary conditions for the operator of
Example 2.2.4.

Proof. Suppose first that m is even, and let w,, be the orientation form on
M. Let p(w,,) = p,- - P,,- It is immediate that{(-)"/?p(w,,), P1,** *+Pm} 1S @
set of Clifford matrices, and thus (a) is proved.

We suppose next that m is odd, and let 2k = m — 1. We fix y € dM, and let
S2k be the unit sphere in Z(T*dM ). We regard II, (7) as a bundle over S?* by
setting A = it so 7($, t) = ip,, p(§) — tp,,. We computed in the first section that
modulo some universal constant a, 7 0,

fSZkChk(HJr("')) = akTr(ipmp] © Py Py 'Pm) =a; Tr(p, - 'Pm—le)

=a,Tr(p, - pn) = a, Tr( p(w,,)).

Consequently, if this trace is nonzero, the bundle II, (7) is topologically
nontrivial on each fiber sphere. This implies that there cannot exist a map B:
IT, (v) - W, and consequently there exists no good boundary conditions. It
is an easy verification that Tr(p,---p,) # 0 for Example 2.2.4, so this
operator does not admit boundary conditions of the sort which we are
considering.

If m is even, set p, = (—i)"/?p(w,,). We replace P by +(P — p,Pp,) without
changing the leading symbol of P to assume P anticommutes with p,. Decom-
pose

P=P.:C>(T.(p,)) = C*(I-(py))
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to define a two-term elliptic complex. This yields the signature, Dolbeault, and
spin complexes from Examples 2.2.1-2.2.3. We note that the boundary condi-
tion corresponding to p, in these examples does not define an elliptic boundary
condition for these complexes; these three elliptic complexes do not admit
local elliptic boundary conditions.

The de Rham complex does not fit this pattern since it does not depend on
the orientation of M. It is related to another Clifford boundary condition for
the operator (d + 6). Near dM, we decompose any form into tangential and
normal components as

6=0, +0, e, for, € A(T*dM).

Define q(6, + 60, Ne,) =0, — 8, Ne, and let B, =3(1 =gq). This gives
Clifford boundary conditions for (d + 8); it also defines relative/absolute
boundary conditions for the de Rham complex.

Not every boundary condition is a Clifford boundary condition. However, it
is possible to find a normal form for elliptic boundary conditions. Let (P, B)
be elliptic with respect to the cone € with the leading symbol of P given by
Clifford multiplication. Let ¢ € N(B) N p, N(B). We decompose ¢ = ¢, +¢_
so that p,¢ = ¢, —¢_. Then ¢, = 2(I = p,¢) € N(B). However ¢, € I1
(X0, i) and ¢_€& I1 (7)(0, +i), so the ellipticity condition implies ¢, = ¢_
=0.

Since N(B) N p, N(B) = {0}, these two subspaces are complementary. We
define ¢ to be +1 on p,N(B) and -1 on N(B). If B’ =3(1 + g), then
N(B’) = N(B) so (P, B’) is equivalent to the problem (P, B) and is elliptic
with respect to €. Since gp,, + p,,¢ = 0, this proves

Lemma 2.2.3. Let the leading symbol of P be given by Clifford multiplication,
and let (P, B) be elliptic with respect to the cone C. Then B is equivalent to a
boundary condition B’ of the form B = 1(1 + q) where q* = 1 and qp,, + p,.q
=0.

23 Res,_yn(s, P, B)

We shall construct a sequence of homotopies for later use. We work only
with the leading symbol, and damp out any homotopy away from the boundary.
We choose a connection v for V, and let (P, B) be elliptic with respect to the
cone €. We choose a Riemannian metric on M, and let 3r, be the radius of
normal coordinates on dM. We identify dM X [0, 3r,) with a neighborhood of
dM in M using geodesic normal coordinates.
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Using parallel translation along the geodesic normal rays in dM, we may
identify the fiber of V at any point (x, r) with the fiber of V at (x,0) for
r < 3r,. In the first homotopy, we replace the original metric by a product
metric near the boundary, and we replace P by an operator whose symbol is
covariant constant in the normal direction near dM.

Homotopy 2.3.1. Let f(¢, r) be a smooth function so that

f(t,r)=r forr>2r,0<f(t,r)<r,
f(O’r):r’ f(lar):ro forr<ro.

Define p/(y, £) = p(x, 7, £) = p(x, f(t,7), §). Since p(x,0, §) = p,(x,0, §),
(P, B) is elliptic with respect to the cone C. p(x, r, §) = p(x,0, £), so the
symbol is covariant constant in the normal direction for r << r,. If we apply this
construction to the operator (d + 8) and square the resulting symbol, we get a
1-parameter family of metrics connecting the original metric to a metric which
is product near the boundary.

We note that if the leading symbol of P is given by Clifford multiplication,
then the leading symbol of P, is still given by Clifford multiplication with
respect to a perturbed metric. The metric at ¢ = 1 is product near the
boundary. This homotopy is valid equally well for higher order operators.

Let the symbol of P be given by Clifford multiplication. Apply Lemma 2.2.3
to assume B =3(1 +¢q) for ¢°=1 and gp,, + p,,q = 0. Extend ¢ to be
covariant constant in the normal direction, so ¢?> =1 and gp,, + p,,g = 0.
Decompose V' =11_(q) ® II (q) into the *1 eigenspaces of g. We assume
the connection on ¥ is chosen, so it splits under this decomposition. Let 5 be a
local frame for II_(g), which is covariant constant in the normal direction, and
let 5, = p,5_ be a local frame for I1_ (g) which is covariant constant in the
normal direction.

Assume that P is as constructed in Homotopy 2.3.1, and near dM decom-
pose

Pl e i) -n 0= ( 1)
where P; is a tangential partial differential operator with coefficients indepen-
dent of r. The sign of ¢, so B is projection on the second factor, is chosen to
make later sign conventions work out correctly.

Let pr= p(x,0, {,0) be the symbol of P,. The identities p,, p, + p;p,, =0
and pZ =|{ 1 imply that p, must have the form

pr=ax 9l ) +en(8 i),
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where

2
a(x,§)" + b(x, ¢ =[I'L, a(x, $)b(x, $)a(x, §) = b(x, H)a(x, {).
The next lemma gives a useful criteria for ellipticity.
Lemma 2.3.1.  Let P have symbol p which is in the form

=3 §)veenf) ) raofs )
where a(x, {) and b(x, {) are matrices, which are linear in { and commute. Let B
be the projection on the second factor. Then (P, B) is elliptic with respect to the
cone C if and only if the matrices a(x,¢)? and a(x,$)? + b(x, t)? have no
eigenvalues p with Re(p) < 0 for { # 0.
Proof. 1Itis clear that

plr i 2f = (2 + a0+ 0) g 9)-

We suppose first that (P, B) is elliptic with respect to C. Then p? has no
eigenvalues with Re(p) <0, so a’(x, {) + b*(x,¢) has no eigenvalues with
Re(p) < 0. We compute

(x,§,0) =

b(x,¢) —iA— ia(x,{))
—iX + ia(x, ) -b(x,8) |

Suppose a? has an eigenvalue with Re < 0. Then a must have an eigenvalue
A € C. Since a and b commute, b preserves the eigenspaces of a, so we can find
a such that aa = Aa and ba = pa. Thus

ot 0(g) = (5 )

If Re(p)>0, then (§) € I, (7)¢, A), while if Re(p) <0, then (§) €
II_(7)§ A) = TI. (7X=¢, -A). Since B(§) = 0, this contradicts the assumed
ellipticity.

Next we suppose that a? and a? + b? have no eigenvalues with nonpositive
real part for ¢ % 0. This implies p> has no eigenvalues with nonpositive real
part for (z, {) # (0,0), and consequently that p has no eigenvalues in €. To
study the ellipticity of the boundary condition, we decompose a into Jordan
blocks which are preserved by b. By taking the direct sum of two copies of
these Jordan blocks, we obtain a subspace which is invariant under { p, 7}. If
B¢ = 0, we decompose ¢ = Z¢, for the ¢, in distinct Jordan blocks. Then
B¢, = 0. Consequently, it suffices to verify ellipticity if we assume @ has a
single Jordan block.



422 P. B. GILKEY & LANCE SMITH

Suppose first that a is a 1 X 1 block with eigenvalue a, so that 7is a 2 X 2
matrix of the form
_ ( b —iA — ia)
T= s

—iA +ia -b
where @ and b are scalars. v has two distinct eigenvalues, so II. (1) are
one-dimensional and consist of eigenvectors. Since —iA + ia # 0, (}) is not an
eigenvector. Thus B is injective and the proof is complete.

Next we study a 2 X 2 Jordan block; the general case is similar and is
therefore omitted. 7 is a 4 X 4 matrix with two distinct eigenvalues of multipl-
icity two. Choose a Jordan basis for the matrix a so that aa; = ¢, aa, = aa,
+ «,. Since a and b commute, b preserves this subspace and ba; = ba;. The
two-dimensional space of all vectors of the form ¢ = (J)a, is 7-invariant. The
restriction of 7 to this subspace has two distinct eigenvalues, and (})a; is not
one of them. Suppose N(B) N I1 (7) # {0}, and choose a basis for IT_ (7) in

the form
* * 1
‘I)] = 1 a]v 952: O a1+ (O)az,

where * indicates some complex number. We compute

2 = ( . )“‘ + (—i}\v—i- ia,)%'

Since —i\ + ig # 0, this is not in the span of {¢, ¢,} which contradicts the
fact that I, (7) is a 7-invariant subspace. Thus the proof is complete.

We use this lemma to construct a homotopy in which we replace the symbol
p by a new symbol which anticommutes with p, = —ip,.q.

Homotopy 2.3.2. Let P have symbol p of the form

s o8 3 ratef} §)vaten(s §)

which is covariant constant in the normal direction for r < 3r, for some #,.
Assume that a(x, {) and b(x, {) are linear in { and commute. We also assume
that (P, B) is elliptic with respect to the cone € where B denotes the projection
on the second factor. Let f(z, r) be smooth such that

0<f(t,r)<1, f(t,r)=1 forr=2r,
f00,r)=1, f(1,r)=0 forr<r,.

Let P, have symbol
et =20 rawn(l O)+renneol ).
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We assumed that a and b commute. Using the ellipticity condition, a¢? and
a? + b* have no eigenvalues with nonpositive real part. It follows that a2 and
(1 — f*a?+ f*(a® + b?) have no eigenvalues with nonpositive real part, and
consequently (P,, B) is elliptic for ¢ € [0, 1] by Lemma 2.3.1.

Let (P, B) be elliptic with respect to the cone € with the leading symbol of P
given by Clifford multiplication. Using Homotopies 2.3.1 and 2.3.2 we may
replace P by a homotopic operator of the form

_ .91(0 1) (1 0) (al)_
P__lar(l o) TArlo 1) Bla,) T

near dM where A, is a tangential differential operator with coefficients
independent of the normal parameter » which is elliptic with respect to the
cone C. Such an operator will be said to split near dM.

Let M be the double of M. M is constructed by taking two copies M, and M,
of M and glueing them along the common boundary dM. On the first copy M,
we take a neighborhood of dM of the form dM X (-r,,0], and on the second
copy M, we take a neighborhood of dM of the form dM X [0, r,). Since the
metric is product near dM, it extends smoothly to the double. '

Sy

We take two copies P; of the operator P on M,. Near dM these have the form

PIZii-(O I)+AT(I 0),

ar \1 o 0 -I
_ .3 (o 1) (1 0)
P =iy (1 o) tAr\o )

where the difference in sign in the coefficient of 9/dr is caused by the
difference between the inward and the outward normal. Consequently we
cannot patch together these two operators directly.

Let ¥ be the bundle over M consisting of two copies ¥; of ¥ over M, which
are patched together near dM using the transition function (}°;). In other
words, if v; € ¥, near dM, we decompose v; = v;" + v; using the decomposi-
tion of ¥V, = II, (q) ® II (g), and then identify v{ = vy and v; = —v;. The

identity
I 0 I 03 _
(0 —I)P‘(o -1) =5
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implies that the P, patch together smoothly to define an operator P: C*(V) -
C>(V) over M.

Let M, be the manifold dM X [0, r,] which we regard as a submanifold of
M. Let P;: C*(V,) = C*=(V,) be the restriction of P to M, and let B, be the
boundary condition:

« .
BO( a;) =0 implies a,(x,0) = a,(x,r)=0.

At r = 0, this is just the original boundary condition. At r = r,, we conjugate
(P,, B,) by the endomorphism ( ?,) to take care of the change in orientation
to see that this is isomorphic to the original boundary condition. Thus (P, B,)
is elliptic with respect to the cone €.

If p is a representation of m,(M), we double V, to define I7p over M and
restrict ¥, to define V,* over M,. The following lemma relates these three
operators.

Lemma 2.3.2.

(a) Res o n(s, P, B) = 3{Res o 0(s, Py, By) + Res,_o (s, P)}.

(b) Ind(p, P, B) = 1 {Ind(p, P,, B,) + Ind(p, P)}.

Proof. We proved in [7] that Res,_, 7(s, P, B) can be computed in terms
of a local formula:

Res,_o n(s, P, B) =fA'4a(y, P)dvol(y) +LMa(x, P, B)dvol(x),

where dvol(y) and dvol(x) denote the Riemannian measures on M and dM,
and a(y, P) and a(x, P, B) are smooth local invariants of the jets of the total
symbols of the operators involved. Since P is locally isomorphic to P, we have

Res,—o n(s, P) Zfﬁa(f, P)dvol(5) = sza(y, P)dvol( y).
Similarly
Res,_, n(s, Py, By) = fMa(y, P)dvol(y) + 2fdMa(x, P, B)dvol(x).
0

However, this residue is independent under perturbations. a(y, P) is not
dependent on the normal parameter r so

fM a(y, P)dvol(y) =r, -LMa(x,O, P)dvol(x).

Since this is independent of r,, it must vanish. We add up the two local
formulas to prove the first assertion; the proof of the second follows similarly
and is therefore omitted.

The next lemma lets us compute y(s, Py, By).
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Lemma 233. Let P, = —id/ar(?}) + A,(} %) on dM X [0, r,] with
boundary condition B given by the projection on the second factor. Let Ay be a
tangential partial differential operator with coefficients independent of r. If
( Py, B) is elliptic with respect to the cone C, thenn(s, Py, B) = n(s, Ay).

Proof. 'This is Theorem 3.4 of [7] which is based on the identity 9(s, P,, B)
= (s, Ay) - index(—id /0r, B); the index is 1 in this setting,.

We say that (P, B) is homotopic to an operator which splits near dM if there
is a l1-parameter family of operators (P,, B) which are elliptic with respect to C
such that P, = P and that P, splits near dM. In particular, Homotopies 2.3.1
and 2.3.2 give

Lemma 2.34. Let (P, B) be elliptic with respect to the cone ©, and let the
leading symbol of P be given by Clifford multiplication. Then (P, B) is homotopic
to an operator which splits near dM.

The basic regularity result of this paper is the following.

Theorem 2.3.5. Let (P, B) be a first order operator elliptic with respect to the
cone C and homotopic to an operator which splits near dM. Then
Res,_,n(s, P, B) = 0.

Proof. Using the invariance of the residue under homotopy, we may
assume that P splits near the boundary. We then apply Lemmas 2.3.2 and 2.3.3
to compute

Res,_on(s, P, B) = {{Res,_on(s, P) + Res,_, n(s, 47)}.

Both P and A are defined on manifolds without boundary, so the right-hand
side vanishes by [2], [6]. We also note that the formula for ind(:,-) on
manifolds without boundary could be used to derive a corresponding cohomo-
logical formula in this case using these techniques. Rather than doing this
directly, we state instead the relevant formula and then prove it is correct by
showing it has the necessary universal properties.

We note that in particular this theorem applies if the leading symbol of P is
given by Clifford multiplication by Lemma 2.3.4.

2.4 Ind((p, P, B) for first order operators

We will use the boundary condition to extend p to a collared neighborhood
of M so that the extension depends on |#| and not on ¢ near the boundary. The
following lemma will be used to show that the resulting integral is independent
of the choices made.

Lemma 2.4.1. Let V be a vector bundle over M. Let ds*( £) be a 1-parameter
family of Riemannian metrics on M, and Vv (&) be a l-parameter family of
connections on V. Let p be a representation of m(M), and g(&): Z(T*M) -
END(V, V) be a l-parameter family of elliptic endomorphisms. Assume that
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gy, & 1) = gy, §, 1) near dM. Then
f Teh(p) A TODD(M) A ch(I1, (Zg(¢)))
SHT*M)

is independent of the parameter ¢.

Proof. Choose two values a and b of the parameter ¢, and let ¢ range from a
to b. Without loss of generality we may assume that ds?(¢), V(¢), and g(e) are
independent of ¢ near ¢ = a and ¢ = b. Let N = M X [aq, b] with the metric
ds*(e) + de®>. We extend V to N with connection v(e). TODD(N) =
TODD(M ). We apply Stokes theorem to the closed differential form

Tch(p) A TODD(N) A ch(I1, (Sg(z)))

to conclude that the integral over d{=*(T*M) X [a, b]} is zero.

This boundary consists of two pieces: Z*(T*M) X d{[a, b]} and
d{Z*T*(M)} X [a, b]. We complete the proof of the lemma by showing the
integral over this second piece is zero. By hypothesis, g is invariant under the
orientation reversing map (y, &, t) — (, &, —t). Therefore this differential form
is invariant as well. This implies that the corresponding integral must be zero.

Let (P, B) be a first order operator elliptic with respect to the cone C. We
do not necessarily assume the symbol of P is given by Clifford multiplication.
We can assume the range R(B) is a subspace of V by replacing B by the
projection on some subspace complementary to the null space N(B). We
choose a metric on ¥ so that N(B) and R(B) are orthogonal, and replace B by
the orthogonal projection on B. Let ¢ = 2B — I. Then R(B) =11, (gq) and
N(B) = I1_(q).

We suppress dependence on x € dM for notational convenience, and define

7§, A) = ip,(p(§) —N) for (§,A) #(0,0) € T*(dM) X C,
Sp(¢, 1) = p(¢) — it: S(T*M) - GL(V) for (£, 1) € S(T*M).

We will construct a sequence of homotopies to deform 7 to g through matrices
with no purely imaginary eigenvalues, and then multiply by —ip,, to get a
homotopy of 2p to —ip,.g.

In the first homotopy, we replace T by 7, to be defined below, supress
dependence on ({, A) for notational convenience, let A be pure imaginary, and
suppose | + |AP = 1. :

Homotopy 2.4.1. Let 7. (1) denote the projection on I1 . (1) relative to the
splitting V' =1I_ (7) @Il (7). Let 1, =7, (1) —w(7) and 7, = ur; + (1 —
u)r for u €[0,1]. If p is an eigenvalue of =, then (1 — u)u = u is the
corresponding eigenvalue of 7,, where we select = as Re(p) > 0 or Re(p) < 0.
Consequently, 7, has no purely imaginary eigenvalue.
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Let 7§ (1) be the orthogonal projection on I1, (7) and let #8(s) = I —#&
(7). In the next homotopy, we replace 7, by 7, = 27§ (7) — I which is unitary
Hermitian.

Homotopy 2.4.2. Let II,(7,)=1I,(r) and let II (1) = {v,=(u—
D78(t)o + (2 — u)v for v € I1_(7)} and u € [1,2]. It is clear that 73(v,) =
w2(v). If this vanishes, then v € I1, (7) so v = 0. This implies dim(II _(7,)) =
dim IT (7) = 3 dim(¥") and also that IT_(7,) does not intersect IT, (7,) so that
V=1II,(r,) ®II (1,). Define 7, = =1 on the appropriate subspaces.

We now use the boundary condition to construct the final homotopy.

Homotopy 2.4.3. Define subspaces V, = {v, = (u — 2)Bv + (3 — u)v for
v €Il (1)} and u €[2,3]. If Bv, =0 then Bv =0, sov € N(B) and v =0
by the assumed ellipticity. Consequently the ¥, have constant rank. Let 7, be
the orthogonal projection on ¥V, and let 7, = 27, — I.

We reparametrize the interval and connect the three homotopies to construct
7, for u € [-1,0] with 7, = ¢ and 7, = 7; 7, has no purely imaginary eigenval-
ues.

If P splits near dM, it is possible to give an equivalent formulation of this
homotopy which is more useful for computational purposes.

Homotopy 2.44. Let P split near dM. Then

_. [0 1 1 0
p(x,o,g,z)_z(l 0)+“("’§)(0 —1)’
— 0 —iA — ia)
(x4 M) = (—z?\ +ia o )
where a has no purely imaginary eigenvalues. We define

(8, %, £, \) = sin(())((l) _01) + cos(8)r(x,8,0), 6 e[%,o].

It is immediate that 72 = {sin*(8) + cos*(6)(a* — A*)}(}{), so that 7 has no
purely imaginary eigenvalues. Thus 7., = gand 7, = 7.

Lemma 2.4.2. Let P split near dM. Let § = u - w/2 and let 7'(u, -) be the
homotopy given by Homotopy 2.4.4 joining q to 1 for u & [-1,0]. Let 7(u, -) be
the homotopy given by Homotopies 2.4.1 through 2.4.3. Then these two homo-
topies are equivalent; i.e., there exists T(s,u,-) with no purely imaginary
eigenvalue such that

7O, u,-)=1(u,-), T(,u,-)=1(u,-),
T(s,-1,-) =g, 7(s,0,-) = 7(-).
Proof. Expand

p(x,7, ¢, 2) :Z((l) é) +a(x,§')((1) _Ol)
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By Lemma 2.3.1 we know a has no eigenvalues in €. Use the homotopies
constructed in Homotopies 2.4.1 through 2.4.3 to construct a l-parameter
family ag joining a to @, where a? =|{ [, and a, is Hermitian.

Since the a, have no eigenvalues in €, the corresponding p, define operators
P, such that (P,, B) is elliptic with respect to C by Lemma 2.3.1. Now apply the
Homotopies 2.4.1 through 2.4.3 and 2.44 to this family to construct the
two-parameter families 7(s, u, *) and 7'(s, u, -).

This reduces the proof of Lemma 2.4.2 to the case in which a? =[{f, a
Hermitian. Decompose II_(7) into * eigenspaces of a, and set w = iX = i|{]|
for A pure imaginary and |w|= 1. This reduces the proof to the case in which
7= (% ¥). Homotopies 2.4.1 and 2.4.2 do not change 7 at all; Homotopies 2.4.3
and 2.4.4 are clearly equivalent rotations of the relevant eigenspaces involved.

Suppose P is covariant constant near dM in M by applying Homotopy 2.3.1,
and also assume the metric on M is product near dM. Let M = dM X [-1,0]
U M joined along the edge dM X 0 = dM, and extend ¥V, and V over M to be
independent of the normal parameter r. We smooth out Homotopies 2.4.1
through 2.4.3 to assume that 7, is identically g near ¥ = —1 and identically 7
near u = 0. We extend 7, from Z(T*dM) = S(T*M © 1) to T*M @ 1 so that
7y, a&, aX) = f(a)7(y, & N) where f: [0,1] - [0, 1] is a smooth monotonic
map which is identically 0 near 0 and identically 1 near 1. (If we just extend 7,
to be homogeneous of degree 1, it will be continuous but not smooth at
(£, A) = (0,0) since T, is not linear in general. This step can be avoided if we
use Homotopy 2.4.4 as 7, is linear in this case.)

Define the smooth symbol Zp, on ST*(M) by

plx,r,$,z)—it forr=0,
2pg = . , .
{—zpm('r,(x, $it) +iz) forr=<0.
We emphasize that the notation 2 py is not the suspension of p, but rather the
extension of Zp using the boundary condition B. The whole point of the
discussion in the first section was to work with ?p as 2 p, does not in general
desuspend. By an abuse of notation, we will let =*p, = Z*"Y(Zpj).

We choose a fixed connection on ¥ and the Levi-Civita connection on T* M.
Let II, (£%p;) be the bundle over S2T*(M) with clutching function Zp,
discussed in the first section. This bundle inherits a natural connection which is
the projection of the connection on ¥ = [I, @II_. We take the component of
the differential form

Teh(p) A TODD(M) A ch(I1, (S2p,)),
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and integrate it to define
ind,(p, P, B) = (_1)'"f Tch(p) A TODD(M) A ch(TT (22p,)).
S2T*(M)
Near the boundary of S%(T*M),

Zpp(x,r,8, 2, 1) = —ip,,,{f(KI2 +12)g+ iz}.

We could make a further homotopy to change this to a symbol which is
independent of ({, z, t) but this is not necessary. Since this depends only on
I$ + 12, Spy factors through M X 12, so the 2m + 1 differential form
defining ind, vanishes identically near r = -1.

Lemma 24.3. Let (P, B) be a first order operator elliptic with respect to the
cone C. Then the following hold.

(a) ind (p, P, B) is a homotopy invariant of (P, B) independent of the metric
on M and the connection on V.

(b) There are local formulas a(y, p, P) and a(x, p, P, B) which depend
functorially on the jets of the metric, the jets of the connection on V, the
connection 1-form of V,, and the jets of the total symbols of (P) and (P, B) such
that

ind,(p, P, B) = fMa(y, p, P)dvol(y) + LMa(x, p, P, B)dvol(x).

Proof. (a) follows directly from Lemma 2.4.1 since = p, depends only on ¢2
and not on ¢ near dM. Construct local formulas by integrating over the fibers
of 22(T*M) to define a( y, p, P) for y € M, and integrate over both the fibers
and the normal variable on dM X [-1, 0] to define a(x, p, P, B). q.e.d.

The manifold M is diffeomorphic to M where we simply slide the collar
inside M using the geodesic normal flow suitably damped away from the
boundary. Thus we can regard 2?p, as being defined on ZX(T*M) if we like;
this is done by performing the homotopies inside M instead of on a collared
neighborhood.

We can now prove the basic formula of this paper.

Theorem 2.44. Let (P, B) be a first order operator elliptic with respect to the
cone C and homotopic to an operator which splits near the boundary. Let p be a
representation of the fundamental group such that V, is topologically trivial. Then

ind(p, P, B) = ind,(p, P, B).

Proof. Both ind and ind, are homotopy invariants given by local formulas.
Without loss of generality we assume (P, B) splits near dM. We know

ind(p, P, B) = +ind(p, Py, B,) + 4 ind(p, P)
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by Lemma 2.3.2. A similar argument shows the same is true for ind,. Therefore
it suffices to prove that

ind(p, P ) = ind\(p, P), ind(p, P,, B®) =ind,(p, P,, B,),
where P and (P,, By) are as defined in Lemma 2.3.2. Since M has no
boundary, the first equality is the statement of Lemma 1.3.2. We may therefore
restrict our attention to the case where

— _ .9 (0 1) (1 0)
M =dM x |0,1}], P—~zar(1 0 +4| !

written in block form. We assume the boundary condition is the projection on
the second factor and that 4 is a tangential first order differential operator
elliptic with respect to the cone € whose coefficients are independent of the
normal parameter r.

Since Xp is independent of r over M, the integral vanishes over M, so we
may restrict attention to M — M. We study first the portion over dM X 0 and .
use Homotopy 2.4.4 to define Z py:

(ot =sin(r) g G )+ cos(rax (G g

+cos(r) - t((l) (1)),

-7

xedM,re[ 2 ,0],§€ T*(dM),t € R.

If we set Zpp = —ip, (7 + iz), this defines
Spp(x, 7,8, t)= sin(r)( 91' 6) + cos(r)a(x, §)((1) _01 )
- 0 0 1
+cos(r) t( 0 —i) +z(1 0).

This gives the contribution over dM X [-7 /2, 0] for the part of M — M, which
is near the left-hand edge. The right-hand edge is isomorphic to the left-hand
edge if we replace r by — and conjugate by ({ %)). It is tempting to compute
the full integral by simply doubling this contribution. We do this in a way
which will extend 2 pg to dM X [-7 /2, 7 /2]

We replace r by —-r and z by —z. This preserves the orientation and
transforms = p to the form

—sin(r)(?i (i))+cos(r)a(x,§)(_01 (1))

ot o 02

—i
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We conjugate this with (g %)) to transform this back to = p,. This permits us to
regard M — M = dM X [-w/2, w /2] where 3 p is defined by

EpB:sin(r)(g, é)+cos(r)a(x,§)((1) _01)

+cos(r)-t(6j 0 ) +z((1) é)

—i

Define w,,,, = dx, AN d§, Ndx,,_, N d{,,_ | so that the orientation is given
by Wy,41 = Wgppp ANdr ANdz Ndt on T*M @ 1. Introduce new parameters
u, =z, u,=sin(r), wuy;=cos(r) -1,

and replace { by cos(r)$. This changes the orientation and replaces 2 p by

ol o)t o) vy G) ey f)

The relation ¢ + z? 4+ |{? = 1 becomes the relation |¢ P+ |‘u|2 =1, so the
new domain of integration is =*7T*(dM). By Lemma 1.2.2(c) we can replace
the symbol by . Since the orientation has been reversed,

ind,(p, P, B)
="' Tch(p) A TODD(dM) A ch(I1, 2%a).
ZAT*(dM)

Use Theorem 1.3.2 to evaluate this integral as ind(p, 4). Since ind(p, A) =
ind(p, P, B), the proof of the theorem is complete.

SECTION THREE

3.1 Definition of ind,(p, P, B) if dM # & andd = 1

It is convenient to work with a larger class of symbols in defining the
homotopies which we will work with. Supress dependence on x € dM. Let
($,2,1) € T¥(M) @ 1 and let

q($,2z,1) =2,4,(8, 1)z T*(M) & 1 ~ END(V, V)

be invertible for (§, z, r) # (0,0, 0). Suppose the g; are continuous and homo-
geneous of orderj in (¢, ¢). Then

g;(ct, ct) = ciq;(§,t) forc=0,
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which implies g,(§, t) = g, is independent of (§, ¢). Define  as in §2.1. The
ellipticity of g implies 7 has no purely imaginary eigenvalues. Let B: C*(W) —
C>(W") be a differential boundary condition, and assume that o4(B): II (1)
— W’ is an isomorphism for ({, ¢t) # (0,0). If (P, B) is elliptic with respect to
the cone €, then ¢ = S p satisfies these conditions.

If d>1, then ¢ and 7 do not act on the same bundle, and 7 is not
homogeneous. Consequently the construction of §2.4 does not generalize, so we
use instead the Atiyah-Bott homotopy of [1]. We review their construction in
the context we shall be using since some of the technical details and notation
differ from their paper owing to the presence of the parameter .

Let ;= V' ® 1, denote the direct sum of j-copies of V. W is the restriction
of ¥, to the boundary. Let END(V, V') act on V; in block form. Let $/(¢) = ¢q
® 1,_, on V. This process of adding trivial factors is called stabilization. It is
clear 2(8/g) = Z¢ ® Z(1,_,). Since Z(1,_) does not depend on (§, z, ¢), it
will not affect the 2d + 1 component of the differential form defining ind,. We
stabilize as often as necessary without affecting ind,.

The bundle W’ does not extend over M in general. This causes certain
technical problems which we correct as follows. 62(B)(0): W — W” is surjec-
tive. We split this surjection to express W= W’ @ W”, where W” is the null
space of 68(B)(0), and W is identified as the orthogonal complement of W” in
W. We will use the boundary condition to construct a homotopy ¢, which joins
S24+ gy to $2971(g,) which does not depend on (z, {, ). If we replace ¢ by
45'q, we do not change the ellipticity conditions. We then replace (g;'q), by
S297Y(g,X(q5'q), to construct a homotopy joining S2¢T!(g) to $297(g,).
Consequently we shall assume without loss of generality that g, = I.

We ignore smoothness questions for the moment and work with continuous
symbols and homotopies. In computing the degree of homogeneity, we con-
sider ¢ as a variable of order d and £ as a variable of order 1. Since | £ + ¢ is
not homogeneous, it is more convenient to work with the homogeneous
function | £ + |£[/%. We define

S(T*M), = {(§,1) ET*M O 1:|£f + 174 = 1).

Radial projection defines homeomorphisms between Z(T*M) and 3(T*M),,.
We parametrize 2(T*M ), by setting

z=—cos(8), ¢=sin(8)§, t=sin%(8)z,
for0<@<wand({ 1) € 3(T*dM),. Let a = cos(8) + isin(8) Then

1= (3 3022 o2
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The parameter « ranges over a half-circle. Let 8 = a? range over the whole
circle. Then

(-)'q=4(§, 7, B) = £,4,({, )87,
where the §; are linear combinations of the g;. For example, if d = 2,

g=z>+qz+q,,
4G=(1+iq, — ‘12)132 +(2+29,)B + (1 —iq, — q,).

Homotopy 3.1.1. Replace g by § by multiplying g by exp(-du LOG(-2«a))
for 0 < y < 1. The multiplicative factor only depends on (z,|{|,|¢]).

It is clear 4(§, £,1) = 1. We will construct a homotopy §, so that §,(¢, ¢, 1)
=1 for all u. This homotopy will project back to define a continuous
homotopy on =(T*M),. We restrict henceforth to the parameter space S! X
2(T*dM),. The second step is to reduce the problem to the first order. We
define

4o q, G4 1
-B 1 0 0

LY(g)=| 0 -8 - 0 0 |:S'XZ(T*dM),
0 0 -8 1

- END(V, 1, Vyi1)-

This is invertible for all (§, 7, 8). The two matrices L%(§) and S“*'(§) are
related by the identity

1 0 0 0
B 1 0 0
Ld(q) B2 ‘B . 0 0
ge Bt ... B 1
1 q, Ga— 94
0 1 .- 0 0
=/ 0 0 0 0 [$97Y(q),
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where g, = (4(B) — 4(0))/B and g; = (g,—(B) — ¢,—(0))/B for i > 1. This
gives an identity of the form

LUg) = Hy(S, 1, B)S* () Hy( B),

where H, is an upper triangular matrix, and ff, is a lower triangular matrix.
Homotopy 3.1.2. We first construct a homotopy H!, connecting S¢*'(§)
with L%(§) by homotoping H, through triangular matrices to the identity, and
then set H(§, £, B) = (H,) ', £, 1) - H)({, £, B) to ensure that H({,1,1) = 1
for all u. This connects S¢*'(§) with an elliptic endomorphism a({, £)8 +
b(¢, f) which is first order in the parameter 8; a(§, f) + b(f, f) =171
For the next homotopies, we define the projection

1
29

7 = T%flm:l (af + b)"d(aB + b) =

f (B+ a'b)" dB.
1B1=1

Homotopy 3.1.3. Consider (a8 + ub)m + (auf + b)(1 — @) for 0 <
u<l.

Homotopy 3.14. Consider (a + ub)Bm; + (au + b)(1 — 7)) forO0<u<1.

We refer to [1] for a proof that these endomorphisms are elliptic. This
connects (aff + b) to (a+ b)Bm +(a+b)(l —am)=Pm + (1 —m) We
adjust the homotopy as above to ensure that it is always I at 8 = 1.

We use the boundary condition for the final homotopy. There is a natural
identification of range 7, with I1, (7) discussed in [1]. We stabilize again to
consider (Bm + (1 — 7))@ 1,. ® 1. onV, .

Homotopy 3.1.5. We use the boundary condition to identify range(r,) with
W’'. We rotate these two subspaces to transform this operator through a
homotopy to o; + (1 — @) ® Bl,. ® 1. On Z(T*M),, B = a® so we can
eliminate this last factor of 8 in a homotopy as was done in Homotopy 3.1.1.

We connect these homotopies to define g,(u) joining S2?*1(g) to 24+ (q,).
The process which assigns to an elliptic pair (g, B) the homotopy ggz(u) has
certain functorial properties.

Definition 3.1.1.(2) Such a process is said to be invariant if it is coordinate
free. Let a be an endomorphism independent of (£, ¢), andlet 4, = a ® --- ®a
J-times on V. The symbol aga' is elliptic with respect to the boundary
condition 4,BA;' = B. We require that

(aga™)p(u) = Az4195(u)A3h,, forallu.

(b) Such a processs is said to be continuous if it depends continuously on
parameters. Let (g(v), B(v)) be a continuous l-parameter elliptic family. We
require that (¢(v)) g(,y(#) depends continuously on all variables.
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(c) Such a process is said to depend locally on (¢, t) if there is no global
information required. Let (£, ¢,) € (T*dM), be given, and (g, B) be elliptic
for i = 1,2. Assume that

q' (%o 2, t9) = ¢*($5, 2, t,) forallz,
a¥(B') (&) = o*(B*)({)-
We require that
g (8)(Eos 2, 10) = a3+() (S0 2, 1) for all 2, u.

The following is an immediate consequence of the construction given.

Lemma 3.1.1. The process which associates to an elliptic pair (q, B) a
homotopy qgz(u) joining S*“*'(q) to S***\(q,) is invariant and continuous, and
depends locally on (¢, t).

In §2.4 we defined an extension using a different process. It is clear that that
processs is invariant, continuous, and local in ({, ). We show that these two
processes are equivalent by proving that these three properties essentially
characterize such a process of d = 1.

Lemma 3.1.2. Suppose we are given two processes which associate to an
elliptic (q, B) a homotopy qi(u) joining S***1(q) to an endomorphism depending
on (&, z,|t]) for u = 1. Assume the processes are invariant and continuous, and
depend locally on (§, t) for i = 0, 1. Then we can construct a 2-parameter family
q5(u, v) joining q3(u) to gl (u), which is invariant, continuous, and local in (§, t)
and such that q(1, v) depends only on (||, z,|t)); i.e., the defining condition is
preserved.

Proof. Without loss of generality we assumed that the process i = 1 is
given by the stabilization of the homotopy of §2.4. Let g = g,(z — it), and let
7(v) be the 1-parameter family joining 7 to an endomorphism which depends
on (§], z,|t]). Let g(v) = go(z — iv(v)). In Homotopies 2.4.1 and 2.4.2, we
do not change IT (7). In Homotopy 2.4.3 we rotate II_ (7) to W’. Therefore
(g(v), B) is elliptic. We define g(u, v) = g(uv) to define a homotopy joining
g = q(0) to g(v) for u €[0,1]. We apply the other process with starting
condition g(v) as u € [1,2] to construct the 2-parameter family gp(u, v). The
homotopy gp(u,0) is equivalent to the application of the other process to g.
The homotopy g(u)(1) is the homotopy of §2.4 with another homotopy glued
on for u € [1,1]. Since g(1) only depends on (||, z,|¢|), the local nature
implies that g(u, 1) only depends on (||, z,]¢[). We just undo this additional
homotopy to construct a homotopy from g(u, 1) to the homotopy of §2.4 to
complete the proof.

‘We use the homotopy g(u) to define an extension of S297!(q) over
dM X [-1,0]luM which agrees with S??*1(g,) on dM X {-1}. We use the
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geodesic flow to identify dM X [-1,0]uM with M so this extension becomes
defined over M. When this construction is applied to ¢ = Zp, we denote the
resulting extension by (2p), = Zp, supressing the stabilizations involved in
the interests of notational simplicity. By an abuse of notation we let Z/p, =
3/7Y(Zp),. We emphasize that in general this does not desuspend; (op)y is
not the suspension of some extension p;. We define

ind,(p, P, B) = (_1)’”f22(T*M)Tch(p) A TODD(M) A ch(TL, (2%p,)).

By Lemmas 3.1.2 and 2.4.1, this agrees with the definition given in the second
section if 4 = 1.

3.2 Functorial properties of ind,

In this section we will verify that ind(p, P, B) and ind,(p, P, B) have the
same functorial properties. We assume that (P, B) is a dth order differential
operator (not pseudo-differential) which is elliptic with respect to the cone C.

Lemma 32.1. If (P, B) is elliptic with respect to the cone C, then the
following hold.

(a) ind,(p, P, B) is a homotopy invariant of (P, B).

(b) There are local formulas a(y,p, p) and a(x,p, P, B) which depend
functorially on the jets of the metric, the jets of the connection on V, the
connection 1-form of v, and the jets of the total symbols of (P) and (P, B) such
that

ind,(p, P, B) = fMa(y, p, P)dvol(y) + fd alx, 0, P, B)dvol(x).

Proof. The proof is exactly the same as that given for Lemma 2.4.3, and is
therefore omitted.

In Lemma 1.3.1 we considered a twisted product formula relating the twisted
index formula and the index formula. In that lemma, we supposed dM, = dM,
= . We now consider the generalization to the case dM, = &, dM, +* 3.
We will consider the other case dM, * @, dM, = @ later.

Lemma 3.2.2. Let dM, = @, and let Q: C*(V,) » C®(V,) be a dth order
elliptic complex over M,. Let P: C*(V,;) —» C®(V;) be a dth order operator over
M,, and let B be a boundary condition such that (P, B) is elliptic with respect to
the cone C. Over M, X M, we define
_ ( P 0

R 0 -p

): CH(Vion)en)-»>C((rhen)ern)
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with boundary condition B = B @® B. Then

(a) (R, B) is elliptic with respect to the cone C,

(b) ind(p, R, B’) = ind(p, P, B) - index(Q),

(¢) ind,(p, R, B") = ind,(p, P, B) - index(Q).

Proof. (a) and (b) follow from Theorem 3.4(a) of [7]. (c) is proved by
making a calculation similar to that made for the proof of Lemma 1.3.1. Let
e, = (%) actin block form on (¥, @ ¥,) ® V,. We can construct a homotopy
connecting e, to the identity by replacing —1 by exp(wiu) as 0 <u < 7. We
may apply Lemma 2.4.1 to replace the symbol 3r by e,2r in computing ind,.

Choose local coordinates (y’, £') for T*(M,). Let (t, v) be the real parame-
ters of T*(M, X M,) ® 1°. We supress the dependence of our symbols on
¥ = (y;, y,) for notational convenience. We defined ind, for symbols which
were pseudo-differential in (¢, ). We perform a homotopy to replace g by a
symbol such that

2d 2d
() =|E''T onV,, q¢*(&) =8I on¥,.
This does not affect the ellipticity condition. We compute
t

e = e — iziae .

We change notation to replace —ig by g without changing index(Q). Let ¢ = 0
be the parameter |£'P9 4+ 2. Then 2(q)* = cI. Let 7. (Zq) denote the
projection on the *¢ eigenspaces I1. (2¢). Then for ¢ > 0

eo2r=p(8%,¢c) @7, (Zq)(¢',t) ®p(£%,—) ® 7.(Zq)(§'. ).

The boundary condition B’ commutes with the projections 7. (2g). Conse-
quently, the homotopies defined in §3.1 respect this decomposition, and we can
express e,2ry in terms of X p, and 7. (Zq). Since 7. (2q) are projections,
they commute with suspension so that

ch(IL, =(eoZry)) = ch(H+ (EZPB))(gzw ¢, v) - ch(I1, (2¢))(¢', 1)

+ch(IL, (22p,))(£%, ¢, v) - ch(I1_(Zq))(§, 1).
We replace the region | £ = t2 + v? = 1 by the region |{?/ + 22 + 12 + 02 =
1, and parametrize this region in the form: [{ 4+ 12 = ¢?, 22 + v* + 2 =1,
¢ > 0. After performing the integral over =(T*M,), parametrized by (y', ', 7)
and taking into account the induced orientations, we compute

TODD(M,) A ch(I1, (2q)) = index(Q) - (-1)",

eg=r = p(£*)I — i(

L(T*Ml)d

fEmM) TODD(M,) A ch(II_(Zq)) = index(Q) - (-1)",
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which implies that
ind,(p, R, B’)

= index(Q)/;ZT‘M Tch(p) A TODD(M,) A ch(I1,(Z2pg))(£2, ¢, v)(~1)"™

_index(Q)/;:ZT‘M Tch(p) A TODD(M,) A ch(T1,(2%p,))(£2, —, v)(-1)"™,

where the integral is restricted to range over ¢ > (0. When we combine the
second integral and take into consideration the change in orientation imposed
by replacing ¢ by —c, this yields index(Q) - ind,(p, P, B) which completes the
proof.

Lemmas 3.2.1 and 3.2.2 are simple formula consequences of the fact that the
process involved in defining the extension 2 p, is invariant, continuous, and
localin (§, t).

Before we consider the other generalization of Lemma 1.3.1 to the case
dM, #+ @ and dM, = @, we review the Atiyah-Bott index theorem. Let Q:
C®(V;) = C=(V,) be an elliptic complex over M|, and let B: C*(}}) -
C=(W’) be a boundary condition. We omit the parameter A and define 7 as in
the second section. We say that (Q, B) is elliptic with respect to {0} if the
symbol of Q is elliptic for § # 0, and o3(B)¢): I (7)) > W’ is an
isomorphism for { # 0. We consider the operator

Q0 © B: C*(V)) » C=(V,) & C=(W"),

and define index (Q, B) = dimker(Q ® B) — dimcoker(Q © B). In general,
this is not index(Qz) = dimker(Q,) — dimcoker(Qp) since B need not be
surjective. We use the boundary condition to define an extension ¢, of
§24*)(g) to a symbol which agrees with $29*!(g,) near dM. The Atiyah-Bott
formula [1] expresses

index(Q, B) =f TODD(M) A ch(I1, (2gz))(-1)".
S(T*M)
This is too general a setting for our purposes so we specialize. Let

. 0 Q* .

R={, | c(rien)-cu(rien),
and let B = B, ® B, be a boundary condition. We assume that (R, B) is
self-adjoint and that (R, B) is elliptic with respect to the cone €. The
self-adjointness condition is equivalent to assuming that (Q, B;) and (Q*, B,)

are adjoints. The ellipticity with respect to the cone € implies that both (Q, B))
and (Q, B,) are elliptic with respect to {0}, but it is a much stronger condition.
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Under these conditions, it is immediate that
’index(QBl) = Tr(( (1) _01 )e"RZB) ,

so this index is given by a local formula.

We noted that index(Q, B) # mdex(Q p) in general. However in this more
restricted situation, we can prove

Lemma 3.2.3. Let (R, B) be self-adjoint and elliptic with respect to C, and
assume R = (OQ 9Yand B= B, © B,. Then

(a) there is amap A: C*(W") - C=(V, © V,) such that BA = 1,,,,

(b) index(Q, B,) = index(Q5). -

Proof. We prove (a) by induction on d. We first suppose d = 1 so B = By,:
V — W' is simply an endomorphism. The ellipticity implies that B is surjective,
so we can choose A such that AB = 1,,.. Let A(Y)(x, r) = f(r)AY(x) where
f(r) is a smooth function which is identically 1 near r = 0 and identically 0
away from dM. Then 4A: C*(W") » C*(W") - C=(V') and BAy = . Next we
suppose d = 2 s0

B = (Boo) ® (BllDr + Blo): Cw(V) - C°°(VV(; ® Wll)

B, and B,, are endomorphisms. B, is a first order tangential operator. The
ellipticity with respect to € implies that By, © B,;: IT, (7)0,i) > W’ is an
isomorphism so in particular By, and B,, are surjective. Define Ay, and 4,,
such that By, 44 = 1y, and By, 4;; = 1;,. We define

Ao, ¥1) :f("){Aoo‘Po + ird; (¢, — Blo‘l’o)}’

and verify BA = 1,,.. The general case is completely similar and is therefore
omitted. This proves that B is surjective, which yields (b).

We can twist two index problems to get another index problem. Let Q:
C>(V,) — C=(V,) over M, and let Q: C*(V,) » C®(V,) over M, be two
elliptic complexes. We form '

*
i=(2 2 Jictmernenen)-cnonenen)
Q -¢o ‘
over M = M, X M,. The symbol of R is elliptic, and if dM = @ -it is
immediate that index(R) = index(Q)index(Q). We refer to [2] for details. If
dM, # 2, we must impose boundary conditions.

Lemma 3.24. Let R =(}§") with boundary condition B= B, ® B, over
M,. Assume (R, B) is elliptic with respect to the cone C and that Ry is
self-adjoint. Let dM, = @ and let Q be an elliptic operator over M,. Let

Rz(Q Qj), B=B ®19B,31.
o -0



440 P. B. GILKEY & LANCE SMITH
Then (R, B) is elliptic with respect to {0} and
index(R, B) = index(Q, B)index(Q).

Proof. Introduce fiber coordinates (¢!, z) over M,, and ¢2 over M,. The
ellipticity of the symbol 7 is immediate since

*f:(Q*th*q 0 )

N

0 49* + qq*

If p is a symbol, let p, = p(x,0, {, D,). We diagonalize §*§ to assume §*§ = a>.
After choosing a suitable basis for ¥, ® V, we can assume 7 has the form

*
(“ 1 ) fora = 0.

q -a
If £2 =0, the ellipticity is clear so we may assume a > 0. We solve the
equations

r$.= *iap., Lim¢.(r)=0, ofB({')p.=4.

If ¢.=(¢'s,9%), we define &, = (¢, , xi¢* ), then 7@, =0. Let ® =
a®_ +bP_. Then this has the boundary values ((a + b)y,, i(a — b)y,). We
solvea+ b= 1,a — b = —i to find ® with the desired boundary values. This
proves the ellipticity. The multiplicative property of the index is a formal
computation which is exactly the same as that given in [2] if dM = &, is
therefore omitted.

We specialize to the following case. Let M, = T, be the flat torus, and let
V, =V, = U be a holomorphic line bundle with Chern character 1. Let
0 = (d/dz2)* C*(U) - C®(U), which has index d; the case d =1 was
discussed in Example 1.3.1. Let (R, B) be as given in Lemma 3.2.4 and form
R.If a = £2 + i£2, then the symbol of R is given by
. (a" q*

7= ®1,.

g -a

Decompose S(T*(M; X M,)) = =3(M,) X M,, and integrate ch(U) over M,
to get 1. When the change of orientation is taken into account, we conclude

o 2] o
q & Jp

We let 8 = a“. This defines a d-fold branched cover of =3(T*M,) so

d - index(Q, B) :_[ES(T*M)TODD(MI) A ch
1

index(Q, B) :fES(TWl)TODD(M,) /\ch(H+(2('§ ‘Z)B)) (=1



TWISTED INDEX PROBLEM 441

If we replace 8 by —8, we reverse the orientation and recognize the resulting
matrix as 22q. Therefore we have

Lemma 3.25. Let R = (3 §") with boundary condition B = B, @ B, over M.
Assume that (R, B) is elliptic with respect to the cone C and that Ry is
self-adjoint. Then

index(Q, B,) = index(QBl)

= Lo yeny, TOPDM) A ch(IL. (2(3%),)) - (-1)"

This lemma is the generalization of Theorem 1.3.2 involving multiple suspen-
sions. We can use this lemma to prove

Lemma 3.2.6. Let R = (OQ €") with boundary condition B = B, © B, over
M,. Assume that (R, B) is elliptic with respect to the cone C and that Ry is
self-adjoint. Let P be elliptic with respect to the cone C over M, with dM, = @,
and let p be a representation of m(M,) such that V, is topologicqlly trivial. We
extend V,, 1o My X M, to be independent of the first factor. Let R = ( &%) and
B = B ® 1. Then (R, B) is elliptic with respect to the cone C and

ind(p, R, B) = index(Qj) - ind(p, P) = ind,(p, R, B).

Proof. The ellipticity of the symbol with respect to the cone € is immediate.
We suppose for the sake of simplicity that the symbol of p is diagonalizable;
the general case follows using Jordan normal form. We study the symbol (§ 7
for scalar a. We solve the equations

rd.= YN —a’¢. = *Fpo., rLgr;;¢:(r) =0, o%(B)(¢{)eo.=1.

Since the matrix (%, =) has eigenvalue A, we can choose ® . = (x. ¢', y. ¢°)
so that 7 ® . = A® _ . If (a, A) # (0, 0), then the vectors (x, , y,)and (x_, y.)
are linearly independent. Thus we can choose ¢, and c_ so that o8(BX{! ) e,
®_ +c_®)=14. This proves the ellipticity. The first equality is a purely
formal calculation, and we refer to [2] for details.

Because ind(p, P) and ind(p, R, B) are homotopy invariants, we can
perform a homotopy to replace P by a pseudo-differential operator with

p? =|&%I. This does not affect the ellipticity. This replaces 7 by |

spo |[1EF -0 g
q €| —it

_|§2|d__it q* ) ®W_(p)

) ® 7. (p)

o
q |&%| —it
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We now argue exactly as in the proof of Lemma 2.3.2 that this implies

ind,(p, R, B) = Tch(p) A TODD(M,) A ch(H+p)(—1)m2>

'[S'(T*Mz)

[ TODD(M,) A ch(I1, =(2%),)(-1)™.
2T M)

We now use Theorem 1.3.2 and Lemma 3.2.5 to evaluate this formula as
ind(p, P) - index(Qp).

The next functorial property we will study is related to the process of taking
powers. Let j be an odd positive integer and let C, = {A: M € C}. This is the
complement of a narrow cone about R — {0}.

Lemma 3.2.7. Let(P, B) be elliptic with respect to the cone C, and let
B,=B®BPO®--- ®BP/~!. Then

(a) (P/, Bj) is elliptic with respect to the cone C,

(b)ind(p, P/, B;) = ind(p, P, B),

(c) ind1(P, P/, Bj) = indl(P, P, B).

Proof. There is of course a similar ellipticity statement which is omitted
here as we shall not need it. If £ # 0, the spectrum of p is contained in the
complement of @j. This implies that the spectrum of p/ is contained in the
complement of ¢ which verifies interior ellipticity. Let (¢, A) # (0,0) and let
{A1,---,A;} be the distinct jth roots of A. Decompose p/ — A = (p, — A;)

-+ (p, — A;)- Suppose ® is given with

(r=N)® =0, Lima(r)=0, o*(B)(5)® =0

We verify the ellipticity of the boundary condition by checking that this
implies ® = 0. Define ¢, = (p, — A;—;) - (p, — A;). Then

(Pn - }\i)‘i’i =1 rL_i_I::‘Pi(r) =0, og(B)(§)¢i =0.

Since (p, — Ao, = (pl — A\)® = 0, the ellipticity of (P, B) implies ¢, = 0.
Since ( p, — A,)9, = ¢, = 0, we apply the same argument to conclude ¢, = 0.
By induction this implies ¢; = ® = 0 which completes the proof of (a).

If j is an odd integer, since the spectrum of Py lies in a cone near the real
axis, {signRe(A)}|A[ = {sign Re(A)}|A[/* except for a finite number of
A~. This implies 5(s, P/, B;) = n(js, P, B) which proves (b).

We prove (c) as follows. Let {#,,-- -,tj} be the jth roots of it and let

., =P — t,. Weapply the construction of §3.1 to define 4(¢, z, A) and @i(g‘, L, B)
corresponding to q 3(p’) and 2 respectively. The identity g = 9, ga
implies § = 30 ga Define a homotopy from Sf(ga )= ga ®71_;to I
p,®1_.;by rotatlng 'the relevant subspaces using block elements of GL(, C)
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Multiply these homotopies to construct a homotopy from S/(§) to ©,
S EB@J,, and apply Homotopies 3.1.2 through 3.1.5 to this homotopy to
create a 1-parameter family of homotopies. We treat (w, D ... @g.)j) as though
it were an operator of order j - d. The resulting homotopty is equivalent to the
homotopy defined by treating this symbol as though it were of order d.
Therefore

ind,(p, P/, B,) = Ei_/EZ(T‘M)Tch(p) ATODD(M) Ach(I1,(2(p,), })(-1)".

Let 2k + 1 = . There are k + 1 branches of the jth root function which lie
in the same half-plane of C — R as does it. These define functions ¢ which are
homotopic to Zp. The remaining k branches define functions p_  which are
homotopic to p + it. Since this corresponds to a reversed orientation, these
cancel off to give ind,(p, P, B) which completes the proof.

The remaining functorial properties are much easier to prove. We summarize
them in the following.

Lemma 3.2.8. (a) Let (P, B) be elliptic with respect to C. Then ind(p, P, B)
= —ind(p, —P, B) and ind(p, P, B) = -ind,(p, P, B).

(b) Let (P,, B,) be elliptic with respect to C and of the same order. Then

ind(p, P, ® P,, B, ® B,) = ind(p, P,, B,),
ind,(p, P, ® P,, B, ® B,) = ind,(p, P,, B,) ® ind,(p, P,, B,).

(c) Let C, be the complement of the 45° cone about R* . If (P, B) is elliptic
with respect to C,,, then ind(p, P, B) = ind,(p, P, B) = 0.

Proof. Assertions (a)-(c) for ind were proved in [7]. We note Z(—p)(§, t) =
-Z(p)(&, —t). -= is homotopic to 2 where we replace (—1) by exp(=ie) for the
homotopy. Thus we can compute ind, for —P by replacing ¢ by —¢. This
reverses the orientation and changes the sign as claimed. Assertion (b) is
immediate since our constructions are additive over direct sums and the Chern
character is additive. If (P, B) is elliptic with respect to &, then we can define
2(p)g(é,t) for ¢ in the upper half-plane. By homotoping ¢ <0 to 1 >0
through the imaginary axis, this replaces =(p), by a symbol which only
depends on |¢|. The integral vanishes for such a symbol; the proof is thus
complete.

These functorial properties suggest that ind = ind,; in general, but we have
not been able to establish this fact in general. Unfortunately, there are
formidable technical difficulties which prevent a straightforward application of
the methods of [2] which are related to the fact that it is not possible to
introduce pseudo-differential boundary conditions in defining the eta in-
variant. The authors hope to deal with the higher order case in a later paper
using the functorial properties established in this section.
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